FLAG ALGEBRAS AND APPLICATIONS TO PERMUTATIONS

Bernard Lidický

Iowa State University

Nov 7, 2014

OUTLINE

- Extremal problems
- Introduction to the use of Flag Algebras
- Example of automated Flag Algebras approach
- Applications of Flag Algebras in permutations

PERMUTATIONS

PROBLEM

Problem

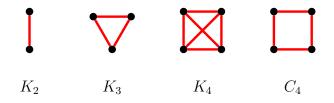
What is the minimum number of monotone subsequences of size k in a permutation of [n]?

PERMUTATIONS

GRAPHS

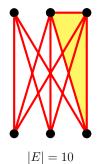
DEFINITION

A graph G consists of vertices V and edges $E \subseteq \binom{V}{2}$.



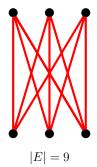
THEOREM (MANTEL 1907)

If a graph G on n vertices has more than $\frac{1}{4}n^2$ edges, then G contains a triangle.



THEOREM (MANTEL 1907)

If a graph G on n vertices has more than $\frac{1}{4}n^2$ edges, then G contains a triangle.



THEOREM (MANTEL 1907)

If a graph G on n vertices has more than $\frac{1}{4}n^2$ edges, then G contains a triangle.

THEOREM (DIRAC 1952)

If all vertices in a graph G on n vertices have degree at least $\frac{n}{2}$, then G is Hamiltonian. $(n \ge 3)$

THEOREM (MANTEL 1907)

If a graph G on n vertices has more than $\frac{1}{4}n^2$ edges, then G contains a triangle.

THEOREM (DIRAC 1952)

If all vertices in a graph G on n vertices have degree at least $\frac{n}{2}$, then G is Hamiltonian. $(n \ge 3)$

Permutations

EXTREMAL PROBLEMS

THEOREM (MANTEL 1907)

If a graph G on n vertices has more than $\frac{1}{4}n^2$ edges, then G contains a triangle.

THEOREM (DIRAC 1952)

If all vertices in a graph G on n vertices have degree at least $\frac{n}{2}$, then G is Hamiltonian. $(n \ge 3)$

THEOREM (ERDŐS, SZEKERES 1935)

Every sequence of $n^2 + 1$ distinct numbers contains a monotone subsequence of size n + 1.

(2,1,4,3,5)

Permutations

EXTREMAL PROBLEMS

THEOREM (MANTEL 1907)

If a graph G on n vertices has more than $\frac{1}{4}n^2$ edges, then G contains a triangle.

THEOREM (DIRAC 1952)

If all vertices in a graph G on n vertices have degree at least $\frac{n}{2}$, then G is Hamiltonian. $(n \ge 3)$

THEOREM (ERDŐS, SZEKERES 1935)

Every sequence of $n^2 + 1$ distinct numbers contains a monotone subsequence of size n + 1.

THEOREM (MANTEL 1907)

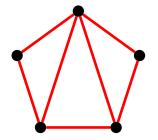
A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

PROBLEM

Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).

- local condition and global parameter
- threshold
- bound and extremal example

Edge-colored graphs

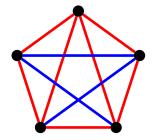


A graph on 5 vertices.

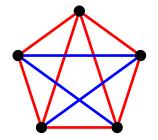
More automatic approa

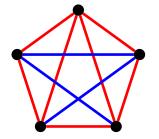
PERMUTATIONS

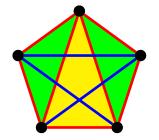
Edge-colored graphs

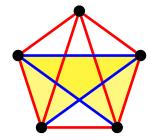


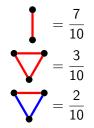
A 2-edge-colored complete graph K_5 on 5 vertices.

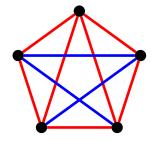


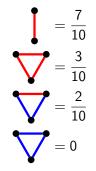


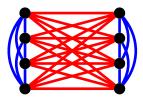


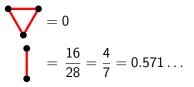


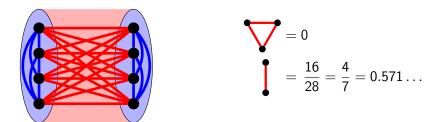


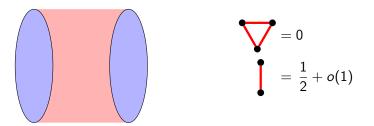












FLAG ALGEBRAS

Seminal paper:

A. Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282.

David P. Robbins Prize by AMS for Razborov in 2013

10

FLAG ALGEBRAS

Seminal paper: A. Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282. David P. Robbins Prize by AMS for Razborov in 2013

Applications to oriented graphs, hypergraphs, crossing number of graphs, geometry,...

THEOREM (HATAMI, HLADKÝ, KRÁL, NORINE, RAZBOROV 2011; GRZESIK 2011)

The number of C_5 's in a triangle-free graph on n vertices is at most $(n/5)^5$.

Let G be a 2-edge-colored complete graph on n vertices.

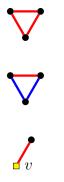
The probability that three random vertices in G span a red triangle.

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

Let G be a 2-edge-colored complete graph on n vertices.

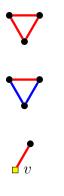


The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

Let G be a 2-edge-colored complete graph on n vertices.

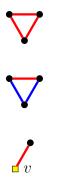


The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

Let G be a 2-edge-colored complete graph on n vertices.

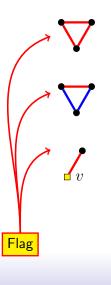


The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

Let G be a 2-edge-colored complete graph on n vertices.



The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

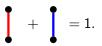
$$+ = 1$$

$$Type \text{ is a flag induced by labeled vertices}$$

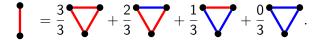
Let G be a 2-edge-colored complete graph on n vertices. Then

$$\mathbf{\nabla} + \mathbf{\nabla} + \mathbf{\nabla} + \mathbf{\nabla} = 1.$$

Same kind as



Let G be a 2-edge-colored complete graph on n vertices. Then



Expanded version where pictures mean graphs:

$$P\left(\prod \text{ in } G\right) = P\left(\prod \text{ in } \bigvee\right) \cdot P\left(\bigvee \text{ in } G\right) + P\left(\prod \text{ in } \bigvee\right)$$

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\bigvee_{v} \times \bigvee_{v} = \bigvee_{v}^{2} + o(1) = \bigvee_{v} + \bigvee_{v} + o(1)$$

o(1) as $|V(G)| ightarrow \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$v \times v = v + o(1) = v + v + o(1)$$

$$v \times v = \frac{1}{2} v + o(1) = \frac{1}{2} v + o(1)$$

o(1) as $|V(G)|
ightarrow \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$v \times v = v + o(1) = v + v + o(1)$$

$$v \times v = \frac{1}{2} v + o(1) = \frac{1}{2} v + o(1)$$

 $v \times v$: The probability that choosing two vertices u_1, u_2 other than v gives red vu_1 and blue vu_2 .

The probability that choosing two different vertices u_1, u_2 other than v gives one of vu_1 and vu_2 is red and the other is blue. o(1) as $|V(G)| \to \infty$ (will be omitted on next slides)

FLAG ALGEBRAS IDENTITIES

$$\frac{1}{3} \bigvee = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}^{v}$$

FLAG ALGEBRAS IDENTITIES

$$\frac{1}{3} \bigvee = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v \in V(G)}$$

$$\bigvee \binom{n}{3} = \sum_{v \in V(G)} \bigvee_{v} \binom{n-1}{2}$$

FLAG ALGEBRAS IDENTITIES

$$\frac{1}{3} \bigvee = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}$$
$$= \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}$$

$$\bigvee \binom{n}{3} = \sum_{v \in V(G)} \bigvee_{v} \binom{n-1}{2}$$

ł

FLAG ALGEBRAS IDENTITIES

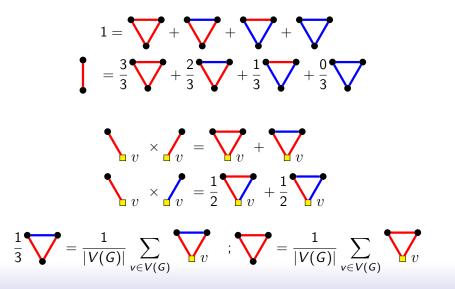
Let G be a 2-edge-colored complete graph on n vertices. Then

$$\frac{1}{3} \bigvee_{v \in V(G)} = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}$$
$$\bigvee_{v \in V(G)} = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}$$
$$\bigvee_{v \in V(G)} (n-1)$$
$$\bigvee_{v \in V(G)} (n-1)$$
$$\bigvee_{v \in V(G)} (n-1)$$
$$\bigvee_{v \in V(G)} (n-1)$$

15

Permutations

IDENTITIES SUMMARY



First try for Mantel's theorem

- How to use the equations to prove something
- Gives bounds as well as helps with extremal examples

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

Permutations

Example - Mantel's Theorem, 1st try Theorem (Mantel 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

Assume edges are red and non-edges are blue

Assume
$$\bigvee$$
 = 0. (We want to conclude

 $\leq \frac{1}{2}$.)

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue

Assume = 0. (We want to conclude $\leq \frac{1}{2}$.)

$$0 \leq \left(1-2 \bigcup_{v}^{\bullet} v\right)^2$$

Permutations

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

. Assume
$$\mathbf{v} = 0$$
. (We want to conclude $\leq \frac{1}{2}$.)
 $0 \leq \left(1 - 2 \mathbf{v} \right)^2 = \left(1 - 4 \mathbf{v} + 4 \mathbf{v} + 4 \mathbf{v} \right)$

$$\bigvee_{v} \times \bigvee_{v} = \bigvee_{v} + \bigvee_{v}$$

PERMUTATIONS

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}$.)
 $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{\bullet} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v \right)$

PERMUTATIONS

EXAMPLE - MANTEL'S THEOREM, 1ST TRY Theorem (Mantel 1907)

Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}$.)
 $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{\bullet} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v \right)^{2}$

$$0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \right)_{v} = \frac{1}{n} \sum_{v} \left(1 - 4 \right)_{v} + 4 \bigvee_{v} + 4 \bigvee_{v}$$
$$= 1 - 4 \qquad + \frac{4}{3} \bigvee_{v} + 4 \bigvee_{v}$$

$$\frac{1}{3} \bigvee = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v} = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}$$

Permutations

Example - Mantel's Theorem, 1st try Theorem (Mantel 1907)

Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}$.)

$$0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \bigg|_{v} \right) = \frac{1}{n} \sum_{v} \left(1 - 4 \bigg|_{v} + 4 \bigg|_{v} + 4 \bigg|_{v} \right)$$
$$= 1 - 4 \qquad + \frac{4}{3} + 4 \bigg|_{v}$$

$$= \frac{2}{3} \mathbf{\nabla} + \frac{1}{3} \mathbf{\nabla} + \mathbf{\nabla}$$

PERMUTATIONS

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

Assume
$$4 = 0$$
. (We want to conclude $4 = \frac{1}{2}$.)
 $0 \le \frac{1}{2} \sum_{n=1}^{\infty} (1-2)^{n} = \frac{1}{2} \sum_{n=1}^{\infty} (1-4)^{n} + 4 4 4 4 4$

$$= n \frac{2}{v} \left(\frac{1}{2}v \right) \quad n \frac{2}{v} \left(\frac{1}{2}v \right) \quad \forall v$$

$$= \frac{2}{3} + \frac{1}{3}$$

Permutations

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue Assume $\nabla = 0$. (We want to conclude $\leq \frac{1}{2}$.) $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{\bullet} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v \right)$ = 1 - 4 $+ \frac{4}{3}$ = 1 - 2 $-\frac{2}{3}$ $2 \qquad = \frac{4}{3} \checkmark + \frac{2}{3} \checkmark$

Permutations

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue Assume \bigvee = 0. (We want to conclude $\leq \frac{1}{2}$.) $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{\bullet} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v \right)$ = 1 - 4 $+ \frac{4}{3}$ = 1 - 2 $-\frac{2}{3}$ 2 = $\frac{4}{3}$ + $\frac{2}{3}$ $\leq 1-2$

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G =$.

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$.
 $0 \le 1 - 2$ $-\frac{2}{3}$

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$.
 $0 \le 1 - 2$ $-\frac{2}{3}$ $0 \le -\frac{2}{3}$

Assume
$$\checkmark = 0$$
 and $\downarrow = \frac{1}{2}$. Goal is $G = \bigcirc$
 $0 \le 1 - 2 \qquad -\frac{2}{3} \qquad 0 \le -\frac{2}{3} \qquad 0 \le -\frac{2}{3} \qquad 0 \le -\frac{2}{3} \qquad 0$
Dnly \checkmark and \checkmark appear.

Assume
$$\checkmark = 0$$
 and $= \frac{1}{2}$. Goal is $G = \bigcirc$.
 $0 \le 1 - 2 \qquad -\frac{2}{3} \checkmark$
 $0 \le -\frac{2}{3} \checkmark$
Dnly \checkmark and \checkmark appear.

Assume
$$\checkmark = 0$$
 and $= \frac{1}{2}$. Goal is $G = \bigcirc$.
 $0 \le 1 - 2 \qquad -\frac{2}{3} \checkmark$
 $0 \le -\frac{2}{3} \checkmark$
Only \checkmark and \checkmark appear.

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$.
 $0 \le 1 - 2$ $-\frac{2}{3}$ $0 \le -\frac{2}{3}$ $0 \le -\frac{2$

Assume
$$\checkmark = 0$$
 and $\downarrow = \frac{1}{2}$. Goal is $G = \bigcirc$.
 $0 \le 1 - 2 \downarrow - \frac{2}{3} \checkmark$
 $0 \le -\frac{2}{3} \checkmark$
Only \checkmark and \checkmark appear.

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$.
 $0 \le 1 - 2$ $-\frac{2}{3}$ $0 \le -\frac{2}{3}$ $0 \le -\frac{2$

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$.
 $0 \le 1 - 2$ $-\frac{2}{3}$ $0 \le -\frac{2}{3}$ $0 \le -\frac{2}{3}$ $0 \le -\frac{2}{3}$ $0 \le -\frac{2}{3}$ appear.

19

• consider 2-edge-colored graphs G_1, G_2, \dots $(|G_n| \to \infty)$

- consider 2-edge-colored graphs G_1, G_2, \ldots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F

- consider 2-edge-colored graphs G_1, G_2, \ldots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F

- consider 2-edge-colored graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs ightarrow [0,1]

- consider 2-edge-colored graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$

- consider 2-edge-colored graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$
- the set of limit objects LIM = homomorphisms $q: q(F) \ge 0$

- consider 2-edge-colored graphs G_1, G_2, \ldots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs $\rightarrow [0, 1]$
- q yields homomorphism from linear combinations of graphs to \mathbb{R}
- the set of limit objects LIM = homomorphisms $q: q(F) \ge 0$

• we optimize on $\mathsf{LIM}^{\mathrm{T}} = \left\{ q \in \mathsf{LIM} : q\left(\bigvee \right) = 0 \right\}$ $\frac{1}{2} \ge \max_{q \in I \text{ IM}^{\mathrm{T}}} q \left(\prod_{l=1}^{r} \right)$

More automatic approach

• How to use computer to guess the right equation for you.

$$0 \leq \left(1 - 2 \int_{v}^{\bullet} v\right)^2$$

Example - Mantel's Theorem, 2nd Try

THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

Assume edges are red and non-edges are blue.

Example - Mantel's Theorem, 2nd Try

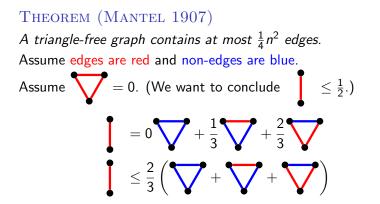
THEOREM (MANTEL 1907)

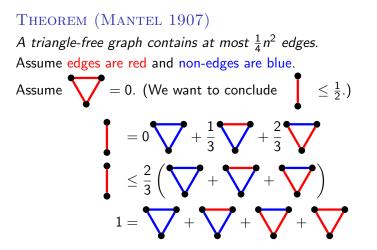
A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

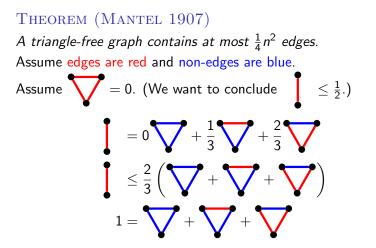
Assume edges are red and non-edges are blue.

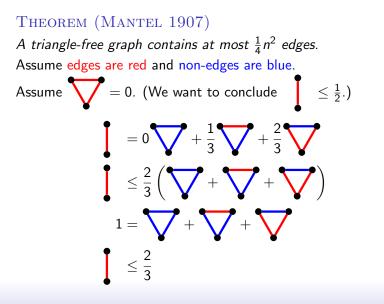
Assume = 0. (We want to conclude $\leq \frac{1}{2}$.)

THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume = 0. (We want to conclude $\leq \frac{1}{2}$.) $= 0 + \frac{1}{3} + \frac{2}{3} + \frac{2}{3}$









Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}$.)
$$= 0 + \frac{1}{3} + \frac{2}{3} +$$

Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}.$)

$$= 0 \mathbf{\nabla} + \frac{1}{3} \mathbf{\nabla} + \frac{2}{3} \mathbf{\nabla}$$

Idea: find $c_1, c_2, c_3 \in \mathbb{R}$ such that for every graph G

$$0 \leq c_1 \mathbf{V} + c_2 \mathbf{V} + c_3 \mathbf{V}$$

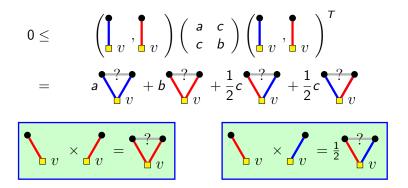
Example - Mantel's Theorem, 2nd Try Assume = 0. (We want to conclude $\leq \frac{1}{2}$.) $= 0 + \frac{1}{3} + \frac{2}{3}$ Idea: find $c_1, c_2, c_3 \in \mathbb{R}$ such that for every graph G $0\leq c_1 \vee + c_2 \vee + c_3 \vee .$ After summing together $\leq c_1 \bigvee + \left(\frac{1}{3} + c_2\right) \bigvee + \left(\frac{2}{3} + c_3\right) \bigvee$ and $\leq \max\left\{ (0+c_1), \frac{1}{3}+c_2, \frac{2}{3}+c_3 \right\}.$

EXAMPLE - MANTEL'S THEOREM, 2ND TRY
Assume
$$\checkmark = 0$$
. (We want to conclude $\checkmark \leq \frac{1}{2}$.)
 $\checkmark = 0 \checkmark + \frac{1}{3} \checkmark + \frac{2}{3} \checkmark$
Idea: find $c_1, c_2, c_3 \in \mathbb{R}$ such that for every graph G
 $0 \leq c_1 \checkmark + c_2 \checkmark + c_3 \checkmark$.
After summing together
 $\checkmark \leq c_1 \checkmark + (\frac{1}{3} + c_2) \checkmark + (\frac{2}{3} + c_3) \checkmark$
and
 $\checkmark \leq \max \left\{ (0 + c_1), \frac{1}{3} + c_2, \frac{2}{3} + c_3 \right\}$

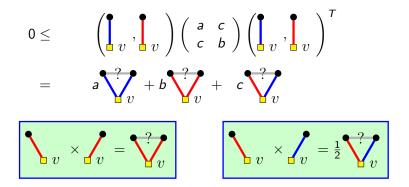
$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$0 \leq \left(\left[\begin{array}{c} \bullet \\ v \end{array}, \begin{array}{c} \bullet \\ v \end{array} \right] \right) \left(\begin{array}{c} \bullet \\ c \end{array} \right) \left(\left[\begin{array}{c} \bullet \\ v \end{array}, \begin{array}{c} \bullet \\ v \end{array} \right] \right)^{T}$$

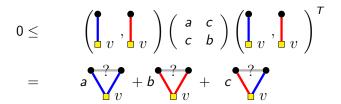
$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$$



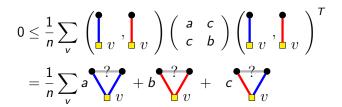
$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$$



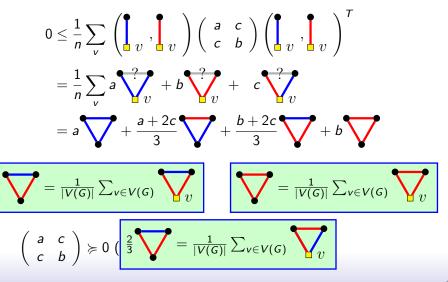
$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$$

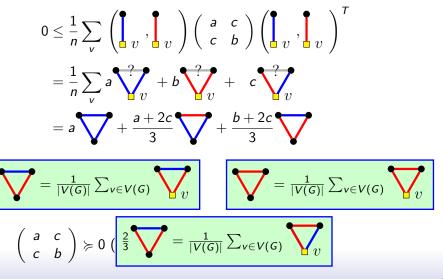


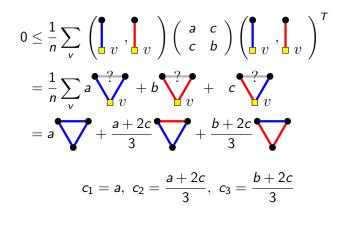
$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$



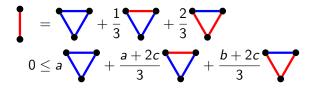
$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$







 $\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$



$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$= \mathbf{v} + \frac{1}{3}\mathbf{v} + \frac{2}{3}\mathbf{v}$$
$$0 \le \mathbf{a}\mathbf{v} + \frac{\mathbf{a} + 2c}{3}\mathbf{v} + \frac{\mathbf{b} + 2c}{3}\mathbf{v}$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$= \mathbf{\nabla} + \frac{1}{3}\mathbf{\nabla} + \frac{2}{3}\mathbf{\nabla}$$
$$0 \le a\mathbf{\nabla} + \frac{a+2c}{3}\mathbf{\nabla} + \frac{b+2c}{3}\mathbf{\nabla}$$

$$\leq \max\left\{a,\frac{1+a+2c}{3},\frac{2+b+2c}{3}\right\}.$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$= \bigvee_{a} + \frac{1}{3} \bigvee_{a} + \frac{2}{3} \bigvee_{a}$$

$$0 \le a \bigvee_{a} + \frac{a + 2c}{3} \bigvee_{a} + \frac{b + 2c}{3} \bigvee_{a}$$

$$\int_{a} \le \max \left\{ a, \frac{1 + a + 2c}{3}, \frac{2 + b + 2c}{3} \right\}.$$
Try
$$\begin{pmatrix} a & c \\ c & b \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}.$$

$$= \bigvee_{a} + \frac{1}{3} \bigvee_{a} + \frac{2}{3} \bigvee_{a}$$

$$0 \le a \bigvee_{a} + \frac{a + 2c}{3} \bigvee_{a} + \frac{b + 2c}{3} \bigvee_{a}$$

$$\int_{a} \le \max \left\{ a, \frac{1 + a + 2c}{3}, \frac{2 + b + 2c}{3} \right\}.$$
Try
$$\begin{pmatrix} a & c \\ c & b \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}.$$
It gives
$$\int_{a} \le \max \left\{ \frac{1}{2}, \frac{1}{6}, \frac{1}{2} \right\} = \frac{1}{2}.$$

OPTIMIZING *a*, *b*, *c*

$$\leq \max\left\{a, \frac{1+a+2c}{3}, \frac{2+b+2c}{3}\right\}$$

$$(SDP) \begin{cases} \text{Minimize } d \\ \text{subject to } a \leq d \\ \frac{1+a+2c}{3} \leq d \\ \frac{2+b+2c}{3} \leq d \\ \begin{pmatrix} a & c \\ c & b \end{pmatrix} \geq 0 \end{cases}$$

(*SDP*) can be solved on computers using CSDP or SDPA. Rounding may be needed for exact results.

P. Hu

E

J. Balogh

L.

Permutations

O. Pikhurko

J. Volec

PERMUTATIONS AND EXTREMAL PROBLEMS

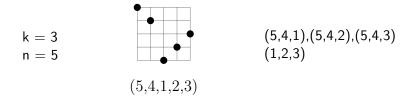
Problem

What is the minimum number of monotone subsequences of size k in a permutation of [n]?

PERMUTATIONS AND EXTREMAL PROBLEMS

Problem

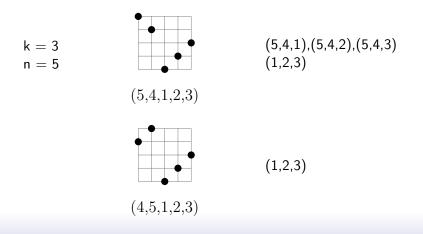
What is the minimum number of monotone subsequences of size k in a permutation of [n]?



PERMUTATIONS AND EXTREMAL PROBLEMS

Problem

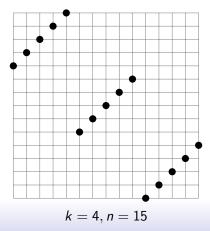
What is the minimum number of monotone subsequences of size k in a permutation of [n]?



Conjecture

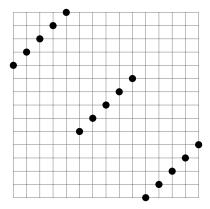
Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized by a permutation on [n] with k - 1 increasing runs of as equal lengths as possible.

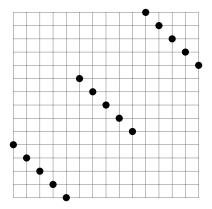


Permutations

EXTREMAL CASE IS NOT UNIQUE

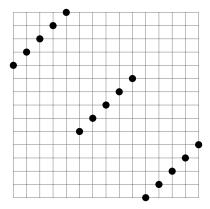


30

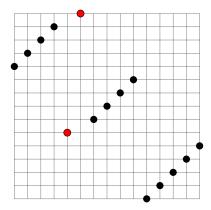


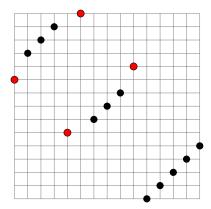
Permutations

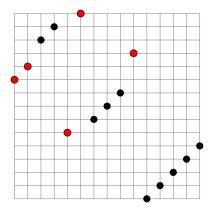
EXTREMAL CASE IS NOT UNIQUE

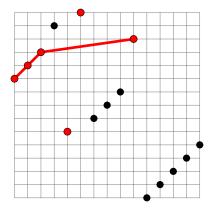


30

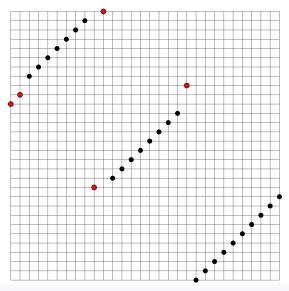








EXTREMAL CASE IS NOT UNIQUE



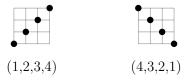
Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized by a permutation on [n] with k - 1 increasing runs of as equal lengths as possible.

THEOREM (SAMOTIJ, SUDAKOV '14+)

Myers' conjecture is true for sufficiently large k and $n \le k^2 + ck^{3/2} \log k$, where c is an absolute positive constant.

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+) Myers' conjecture is true for k = 4 and n sufficiently large.



Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized by a permutation on [n] with k - 1 increasing runs of as equal lengths as possible.

THEOREM (SAMOTIJ, SUDAKOV '14+)

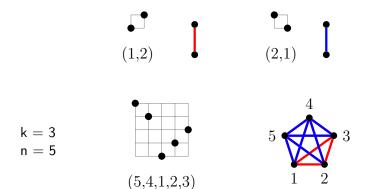
Myers' conjecture is true for sufficiently large k and $n \le k^2 + ck^{3/2} \log k$, where c is an absolute positive constant.

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+) Myers' conjecture is true for k = 4 and n sufficiently large.

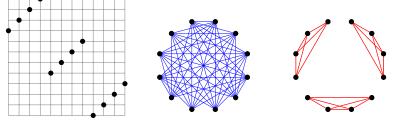
Use of flag algebras, k = 5, 6 also doable, 7 not.

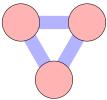
FROM PERMUTATIONS TO PERMUTATION GRAPHS

FROM PERMUTATIONS TO PERMUTATION GRAPHS



EXTREMAL EXAMPLE (k = 4)





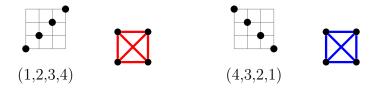
PERMUTATIONS

As flag algebra question (k = 4)

(4, 3, 2, 1)

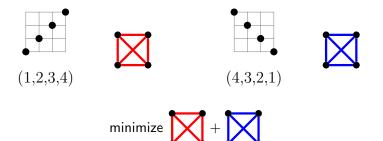
PERMUTATIONS

As flag algebra question (k = 4)



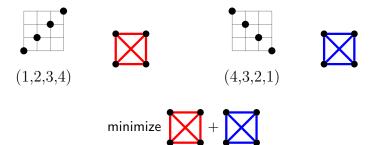
PERMUTATIONS

As flag algebra question (k = 4)



Permutations

As flag algebra question (k = 4)



THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+)

$$\boxed{} + \boxed{} \geq \frac{1}{27}$$

for every permutation graph.

Permutations

ONLY FOR PERMUTATION GRAPHS

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+)

$$\min\left(\left| \underbrace{\mathbf{M}}_{\mathbf{k}} + \underbrace{\mathbf{M}}_{\mathbf{k}} \right| \right) = \frac{1}{27}$$

over permutation graphs (and extremal permutations described using Myers' results).

ONLY FOR PERMUTATION GRAPHS

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+)

$$\min\left(\left| \underbrace{\mathbf{X}} + \underbrace{\mathbf{X}} \right| \right) = \frac{1}{27}$$

over permutation graphs (and extremal permutations described using Myers' results).

THEOREM (SPERFELD '12; THOMASON '89)

$$\frac{1}{35} < \min\left(\left| \underbrace{\mathbf{M}} + \underbrace{\mathbf{M}} \right| \right) < \frac{1}{33}$$

over all sufficiently large 2-edge-colored complete graphs.

 $\boxed{} + \boxed{} \geq \frac{1}{27}$

 $\mathbf{X} + \mathbf{X} \geq \frac{1}{27}$

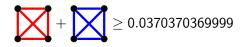
• Write a semidefinite program (*SDP*) (with graphs on 7 vertices, 388 constraints).

+ $\geq \frac{1}{27}$

- Write a semidefinite program (*SDP*) (with graphs on 7 vertices, 388 constraints).
- Solve (SDP) using a computer, obtain $M' \in \mathbb{R}^{f \times f}$.

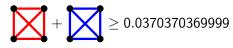
$$\mathbf{X} + \mathbf{X} \geq \frac{1}{27} = 0.\overline{037}$$

- Write a semidefinite program (*SDP*) (with graphs on 7 vertices, 388 constraints).
- Solve (SDP) using a computer, obtain $M' \in \mathbb{R}^{f \times f}$.
- *M*′ gives



$$\mathbf{X} + \mathbf{X} \geq \frac{1}{27} = 0.\overline{037}$$

- Write a semidefinite program (*SDP*) (with graphs on 7 vertices, 388 constraints).
- Solve (SDP) using a computer, obtain $M' \in \mathbb{R}^{f \times f}$.
- *M*′ gives



• Round M' to $M \in \mathbb{Q}^{f imes f}$, such that

$$\mathbf{X} + \mathbf{X} \geq \frac{1}{27}$$

and $M \geq 0$.

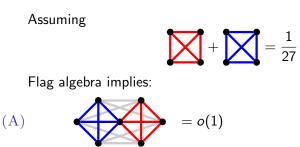
STRUCTURE OF EXTREMAL PERMUTATIONS

Assuming

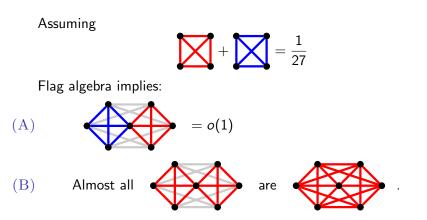
 $\mathbf{X} + \mathbf{X} = \frac{1}{27}$

Flag algebra implies:

STRUCTURE OF EXTREMAL PERMUTATIONS



STRUCTURE OF EXTREMAL PERMUTATIONS



AFTER FLAG ALGEBRA (STABILITY)

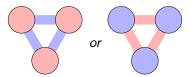
"X + X is close to $\frac{1}{27} \Rightarrow G$ is close to G or G or

Lemma (Stability)

For every $\varepsilon > 0$ there exist n_0 and $\varepsilon' > 0$ such that every admissible graph G of order $n > n_0$ with

$$\mathbf{X} + \mathbf{X} \leq \frac{1}{27} + \varepsilon'$$

is isomorphic to either



after recoloring at most $20\varepsilon n^2$ edges.

AFTER FLAG ALGEBRA (STABILITY SKETCH)

"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to G or G

 Using removal lemma, properties (A) and (B) can be satisfied entirely. (lost εn² edges) AFTER FLAG ALGEBRA (STABILITY SKETCH)

"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to G or G

- Using removal lemma, properties (A) and (B) can be satisfied entirely. (lost εn² edges)
- For all $v \in V(G) \setminus X$, where $|X| \leq 2\varepsilon n$ vertices

$$\frac{1}{27} - \varepsilon \leq \bigvee_{v} + \bigvee_{v} \leq \frac{1}{27} + \varepsilon'' \tag{1}$$

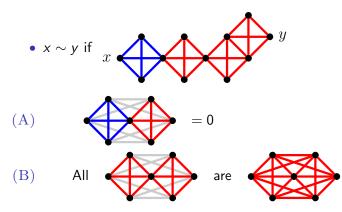
AFTER FLAG ALGEBRA (STABILITY SKETCH)

"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to G or G

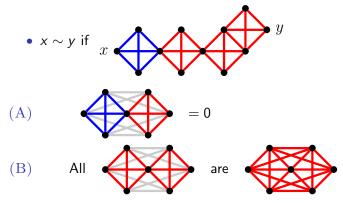
- Using removal lemma, properties (A) and (B) can be satisfied entirely. (lost εn² edges)
- For all $v \in V(G) \setminus X$, where $|X| \leq 2\varepsilon n$ vertices

$$\frac{1}{27} - \varepsilon \leq \mathbf{x} + \mathbf{x} \leq \frac{1}{27} + \varepsilon''$$
(1)
$$x \sim y \text{ if } x \quad \mathbf{y} = \frac{1}{27} + \varepsilon''$$

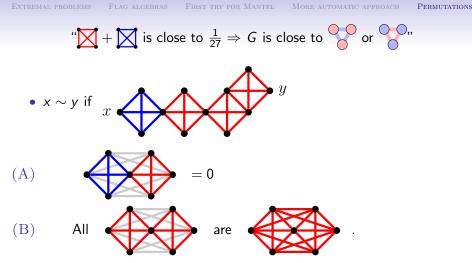
"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to or or ","



"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to G or G



• Every equivalence class is a monochromatic clique.



• Every equivalence class is a monochromatic clique.

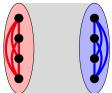
• There are three equivalence classes of size $\frac{1}{3}n \pm 16\varepsilon n$ by (1).

"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to or or ""

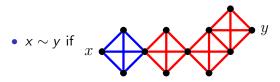
- Every equivalence class is a monochromatic clique.
- There are three equivalence classes of size $\frac{1}{3}n \pm 16\varepsilon n$ by (1).
- The classes have the same color

"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to or or ""

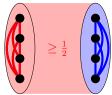
- Every equivalence class is a monochromatic clique.
- There are three equivalence classes of size $\frac{1}{3}n \pm 16\varepsilon n$ by (1).
- The classes have the same color



"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to or or ""

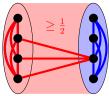


- Every equivalence class is a monochromatic clique.
- There are three equivalence classes of size $\frac{1}{3}n \pm 16\varepsilon n$ by (1).
- The classes have the same color



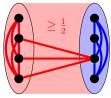
"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to or or ""

- Every equivalence class is a monochromatic clique.
- There are three equivalence classes of size $\frac{1}{3}n \pm 16\varepsilon n$ by (1).
- The classes have the same color



"
$$X + X$$
 is close to $\frac{1}{27} \Rightarrow G$ is close to G or G

- Every equivalence class is a monochromatic clique.
- There are three equivalence classes of size $\frac{1}{3}n \pm 16\varepsilon n$ by (1).
- The classes have the same color



Exact result: By recoloring edges.

Other permutations - maximizing 1342 and 2413

$$0.19657 \le \sigma(1342) \le 2/9 = 0.22222...$$
 AAHHS
 $\sigma(1342) \le 0.1988373$ BHLPUV

$$51/511 = 0.0998 \ldots \le \sigma(2413) \le 2/9 = 0.22222$$
 AAHHS
 $0.1024732 \le \sigma(2413)$ P
 $0.10472 \ldots \le \sigma(2413)$ PS
 $\sigma(2413) \le 0.1047805$ BHLPUV

AAHHS ... Albert, Atkinson, Handley, Holton, Stromquist 2002 P... Presutti 2008 PS... Presutti, Stromquist 2010 BHLPUV... us

Thank you for your attention!