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Outline

• Extremal problems

• Introduction to the use of Flag Algebras

• Example of automated Flag Algebras approach

• Applications of Flag Algebras in permutations
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Problem

Problem
What is the minimum number of monotone subsequences of size k
in a permutation of [n]?
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Graphs

Definition
A graph G consists of vertices V and edges E ⊆

(V
2

)
.

K2 K3 K4 C4
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Extremal problems

Theorem (Mantel 1907)

If a graph G on n vertices has more than 1
4n

2 edges,
then G contains a triangle.

Theorem (Dirac 1952)

If all vertices in a graph G on n vertices have degree
at least n

2 , then G is Hamiltonian. (n ≥ 3)

Theorem (Erdős, Szekeres 1935)

Every sequence of n2 + 1 distinct numbers contains a
monotone subsequence of size n + 1.

|E| = 10
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Extremal problems
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then G contains a triangle.

Theorem (Dirac 1952)

If all vertices in a graph G on n vertices have degree
at least n

2 , then G is Hamiltonian. (n ≥ 3)

Theorem (Erdős, Szekeres 1935)
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Extremal problems

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Problem
Maximize a graph parameter (# of edges) over a class of graphs
(triangle-free).

• local condition and global parameter

• threshold

• bound and extremal example
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Edge-colored graphs

A graph on 5 vertices.
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Edge-colored graphs

A 2-edge-colored complete
graph K5 on 5 vertices.
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Densities (ratios) in edge-colored graphs

=
7

10

=
3

10

=
2

10

= 0
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Classical theorems — Mantel’s theorem

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

= 0

=
4

6
=

2

3
= 0.6
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Classical theorems — Mantel’s theorem

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

= 0

=
9

15
=

3

5
= 0.6
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Classical theorems — Mantel’s theorem

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

= 0

=
16

28
=

4

7
= 0.571 . . .
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Classical theorems — Mantel’s theorem

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

= 0

=
1

2
+ o(1)
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Flag algebras
Seminal paper:
A. Razborov, Flag Algebras, Journal of Symbolic Logic 72 (2007),
1239–1282.
David P. Robbins Prize by AMS for Razborov in 2013

Applications to oriented graphs, hypergraphs, crossing number of
graphs, geometry,. . .

Theorem (Hatami,Hladký,Krá ,l,Norine,Razborov 2011;
Grzesik 2011)

The number of C5’s in a triangle-free graph on n vertices is at
most (n/5)5.

n
5

n
5

n
5

n
5

n
5
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Flag algebras definitions
Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in
G span a red triangle.

The probability that three random vertices in
G span a triangle with one red and two blue
edges.

v

The probability that a random vertex other
than v is connected to v ∈ V (G ) by a red
edge, i.e., the red degree of v divided by n− 1.

+ =

1

Type is a flag induced by labeled vertices

1 2

Flag
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

+ + + = 1.

Same kind as

+ = 1.
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

=
3

3
+

2

3
+

1

3
+

0

3
.

Expanded version where pictures mean graphs:

P

(
inG

)
= P

(
in

)
·P
(

inG

)
+P

(
in

)
·P
( )

+· · ·
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

v
×

v
=

v

?
+ o(1) =

v
+

v
+ o(1)

v
×

v
=

1

2 v

?
+ o(1) =

1

2 v
+

1

2 v
+ o(1)

v
×

v
: The probability that choosing two vertices u1, u2

other than v gives red vu1 and blue vu2.

v

?
: The probability that choosing two different vertices u1, u2

other than v gives one of vu1 and vu2 is red and the other is blue.

o(1) as |V (G )| → ∞ (will be omitted on next slides)
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

1

3
=

1

|V (G )|
∑

v∈V (G)
v

=
1

|V (G )|
∑

v∈V (G)
v

(
n

3

)
=

∑
v∈V (G)

v

(
n − 1

2

)

(
n

3

)
=

1

3

∑
v∈V (G)

v

(
n − 1

2

)
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Identities Summary
Let G be a 2-edge-colored complete graph on n vertices. Then

1 = + + +

=
3

3
+

2

3
+

1

3
+

0

3

v
×

v
=

v
+

v

v
×

v
=

1

2 v
+

1

2 v

1

3
=

1

|V (G )|
∑

v∈V (G)
v

; =
1

|V (G )|
∑

v∈V (G)
v
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First try for Mantel’s theorem

• How to use the equations to prove something

• Gives bounds as well as helps with extremal examples
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Example - Mantel’s theorem, 1st try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue

.

Assume = 0. (We want to conclude ≤ 1
2 .)

0 ≤

1

n

∑
v

(
1− 2

v

)2

=
1

n

∑
v

(
1− 4

v
+ 4

v
+ 4

v

)

= 1− 4 +
4

3
+ 4

= 1− 2 − 2

3

≤ 1− 2

v
×

v
=

v
+

v

2

= 3 + 3

+

18
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1
3 = 1

|V (G)|
∑

v∈V (G) v
= 1
|V (G)|

∑
v∈V (G) v

2

= 3 + 3

+
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Example - stability for Mantel

Assume = 0 and = 1
2 . Goal is G = .

0 ≤ 1− 2 − 2

3

0 ≤ −2

3

Only and appear.

19
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Flag Algebras - formal approach

• consider 2-edge-colored graphs G1,G2, . . . (|Gn| → ∞)

• pn(F ) := probability that random |F | vertices of Gn induces F

• sequence (Gn) is convergent if pn(F ) converge for all F

• limit object – function q: all finite 2-edge-colored graphs → [0, 1]

• q yields homomorphism from linear combinations of graphs to R

• the set of limit objects LIM = homomorphisms q: q(F ) ≥ 0

• we optimize on LIMT =

{
q ∈ LIM : q

( )
= 0

}
1

2
≥ max

q∈LIMT
q

( )
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More automatic approach

• How to use computer to guess the right equation for you.

0 ≤
(

1− 2
v

)2
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Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
1 = + +

+

≤ 2

3
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Example - Mantel’s theorem, 2nd try

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

Idea: find c1, c2, c3 ∈ R such that for every graph G

0 ≤ c1 + c2 + c3 .

After summing together

≤ c1 +

(
1

3
+ c2

)
+

(
2

3
+ c3

)
and

≤ max

{
(0 + c1) ,

1

3
+ c2,

2

3
+ c3

}
.
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1
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2

3
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c3 < 0
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Candidates for c1, c2, c3

0 ≤

1

n

∑
v

(
v
,

v

)(
a c
c b

)(
v
,

v

)T

=

1

n

∑
v

a
v

?
+ b

v

?
+

1

2

c
v

?

+
1

2
c

v

?

= a +
a + 2c

3
+

b + 2c

3

+ b

c1 = a, c2 =
a + 2c

3
, c3 =

b + 2c

3

(
a c
c b

)
< 0 (matrix is positive semidefinite)
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2
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1
3 = 1

|V (G)|
∑

v∈V (G) v
= 1
|V (G)|

∑
v∈V (G) v

2
3 = 1

|V (G)|
∑

v∈V (G) v
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Using c1, c2, c3

= +
1

3
+

2

3

0 ≤ a +
a + 2c

3
+

b + 2c

3

≤ max

{
a,

1 + a + 2c

3
,

2 + b + 2c

3

}
.

Try (
a c
c b

)
=

(
1/2 −1/2
−1/2 1/2

)
.

It gives

≤ max

{
1

2
,

1

6
,

1

2

}
=

1

2
.

(
a c
c b

)
< 0 (matrix is positive semidefinite)
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Optimizing a, b, c

≤ max

{
a,

1 + a + 2c

3
,

2 + b + 2c

3

}

(SDP)



Minimize d

subject to a ≤ d
1+a+2c

3 ≤ d
2+b+2c

3 ≤ d(
a c

c b

)
< 0

(SDP) can be solved on computers using CSDP or SDPA.
Rounding may be needed for exact results.
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J. Balogh P. Hu L.

Permutations

O. Pikhurko B. Udvari J. Volec
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Permutations and extremal problems

Problem
What is the minimum number of monotone subsequences of size k
in a permutation of [n]?

k = 3
n = 5

(5,4,1,2,3)

(5,4,1),(5,4,2),(5,4,3)
(1,2,3)

(4,5,1,2,3)

(1,2,3)
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Conjecture

Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized
by a permutation on [n] with k − 1 increasing runs of as equal
lengths as possible.

k = 4, n = 15
29
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Extremal case is not unique

30
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Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized
by a permutation on [n] with k − 1 increasing runs of as equal
lengths as possible.

Theorem (Samotij, Sudakov ’14+)

Myers’ conjecture is true for sufficiently large k and
n ≤ k2 + ck3/2 log k , where c is an absolute positive constant.

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

Myers’ conjecture is true for k = 4 and n sufficiently large.

(1,2,3,4) (4,3,2,1)

Use of flag algebras, k = 5, 6 also doable, 7 not.

31



Extremal problems Flag algebras First try for Mantel More automatic approach Permutations

Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized
by a permutation on [n] with k − 1 increasing runs of as equal
lengths as possible.

Theorem (Samotij, Sudakov ’14+)

Myers’ conjecture is true for sufficiently large k and
n ≤ k2 + ck3/2 log k , where c is an absolute positive constant.

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

Myers’ conjecture is true for k = 4 and n sufficiently large.

(1,2,3,4) (4,3,2,1)

Use of flag algebras, k = 5, 6 also doable, 7 not.
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From permutations to permutation graphs

(1,2) (2,1)

k = 3
n = 5

(5,4,1,2,3) 1 2

3

4

5
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Extremal example (k = 4)

33



Extremal problems Flag algebras First try for Mantel More automatic approach Permutations

As flag algebra question (k = 4)

(1,2,3,4) (4,3,2,1)

minimize +

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

+ ≥ 1

27

for every permutation graph.
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Only for permutation graphs

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

min

(
+

)
=

1

27

over permutation graphs (and extremal permutations described
using Myers’ results).

Theorem (Sperfeld ’12; Thomason ’89)

1

35
< min

(
+

)
<

1

33

over all sufficiently large 2-edge-colored complete graphs.
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We want to prove + ≥ 1
27

= 0.037

• Write a semidefinite program (SDP) (with graphs on 7 vertices,
388 constraints).

• Solve (SDP) using a computer, obtain M ′ ∈ Rf×f .

• M ′ gives

+ ≥ 0.0370370369999

• Round M ′ to M ∈ Qf×f , such that

+ ≥ 1

27

and M < 0.
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Structure of extremal permutations

Assuming

+ =
1

27

Flag algebra implies:

(A) = o(1)

(B) Almost all are .
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After flag algebra (stability)

“ + is close to 1
27 ⇒ G is close to or ”

Lemma (Stability)

For every ε > 0 there exist n0 and ε′ > 0 such that every
admissible graph G of order n > n0 with

+ ≤ 1

27
+ ε′

is isomorphic to either

or

after recoloring at most 20εn2 edges.
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After flag algebra (stability sketch)

“ + is close to 1
27 ⇒ G is close to or ”

• Using removal lemma, properties (A) and (B) can be satisfied
entirely. (lost εn2 edges)

• For all v ∈ V (G ) \ X , where |X | ≤ 2εn vertices

1

27
− ε ≤

v
+

v
≤ 1

27
+ ε′′ (1)

• x ∼ y if
x

y
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“ + is close to 1
27 ⇒ G is close to or ”

• x ∼ y if
x

y

(A) = 0

(B) All are .

• Every equivalence class is a monochromatic clique.
• There are three equivalence classes of size 1

3n ± 16εn by (1).
• The classes have the same color

Exact result: By recoloring edges.
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Other permutations - maximizing 1342 and 2413

0.19657 ≤ σ(1342) ≤ 2/9 = 0.22222 . . . AAHHS

σ(1342) ≤ 0.1988373 BHLPUV

51/511 = 0.0998 . . . ≤ σ(2413) ≤ 2/9 = 0.22222 AAHHS

0.1024732 ≤ σ(2413) P

0.10472 . . . ≤ σ(2413) PS

σ(2413) ≤ 0.1047805 BHLPUV

AAHHS . . . Albert, Atkinson, Handley, Holton, Stromquist 2002
P. . . Presutti 2008
PS. . . Presutti, Stromquist 2010
BHLPUV. . . us
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Thank you for your attention!
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