RAINBOW TRIANGLES IN 3-EDGE-COLORED GRAPHS

József Balogh, Ping Hu, <u>Bernard Lidický</u>, Florian Pfender, Jan Volec, Michael Young

SIAM Conference on Discrete Mathematics Jun 17, 2014

PROBLEM Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles \checkmark .

PROBLEM Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles \checkmark .

Color edges randomly, expected density $\frac{2}{9}$.

PROBLEM Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles

Color edges randomly, expected density $\frac{2}{9}$.

Iterated blow-up of triangle

$$F(n) = \max \# \text{ of } \bigvee \text{ over all 3-edge-colorings of } K_n$$

 $F(n) = \max \# \text{ of } \bigvee$ over all 3-edge-colorings of K_n

CONJECTURE (ERDŐS AND SÓS; '72⁻) For all n > 0,

F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,

where a + b + c + d = n; a, b, c, d are as equal as possible, and F(0) = 0.

 $F(n) = \max \# \text{ of } \bigvee$ over all 3-edge-colorings of K_n

Conjecture (Erdős and Sós; '72⁻) For all n > 0,

F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,

where a + b + c + d = n; a, b, c, d are as equal as possible, and F(0) = 0.

 $F(n) = \max \# \text{ of } \bigvee \text{ over all 3-edge-colorings of } K_n$

Conjecture (Erdős and Sós; '72⁻) For all n > 0,

F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,

where a + b + c + d = n; a, b, c, d are as equal as possible, and F(0) = 0.

FLAG ALGEBRAS APPLICATION

Construction: $0.4 \leq \bigvee$

- get a matching upper bound $\bigvee \approx 0.4$
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

FLAG ALGEBRAS APPLICATION

Construction: $0.4 \leq \bigvee$

- get a matching upper bound $\bigvee \approx 0.4$
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

Flag algebras (on 6 vertices) give only

$$\checkmark \leq 0.4006,$$

not enough for rounding.

FLAG ALGEBRAS APPLICATION

Construction: $0.4 \leq \bigvee$

- get a matching upper bound $\bigvee \approx 0.4$
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

Flag algebras (on 6 vertices) give only

$$\bigvee \le 0.4006,$$

not enough for rounding.

The iterative extremal construction is causing troubles....

NOT ITERATED EXTREMAL CONSTRUCTIONS THEOREM (Turán)

of edges over K1-free graphs is maximized by

THEOREM (HATAMI, HLADKÝ, KRÁL, NORINE, RAZBOROV)

of C_5s over triangle-free graphs is maximized by

THEOREM (CUMMINGS, KRÁL, PFENDER, SPERFELD, TREGLOWN, YOUNG)

of monochromatic triangles over 3-edge-colored graphs is minimized by

And more... http://flagmatic.org

ITERATED EXTREMAL CONSTRUCTIONS

OUR MAIN RESULT

$$F(n) = \max \#$$
 of \bigvee over all coloring of K_n

THEOREM (BALOGH, HU, L., PFENDER, VOLEC, YOUNG) For all $n > n_0$,

$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where a + b + c + d = n; a, b, c, d are as equal as possible.

• pick a properly 3-edge-colored K₄

• pick a properly 3-edge-colored K₄

• pick a properly 3-edge-colored K_4

- pick a properly 3-edge-colored K_4
- partition the rest

- pick a properly 3-edge-colored K_4
- partition the rest

- pick a properly 3-edge-colored K_4
- partition the rest

- pick a properly 3-edge-colored K_4
- partition the rest

- pick a properly 3-edge-colored K₄
- partition the rest
- correct edges between X_is

- pick a properly 3-edge-colored K₄
- partition the rest
- correct edges between X_is
- no orange trash

- pick a properly 3-edge-colored K_4
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_is

- pick a properly 3-edge-colored K_4
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_is

- pick a properly 3-edge-colored K_4
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_is

How to pick the properly 3-edge-colored K_4 ?

 $(|X_i|$ s close to 0.25*n*, few wrongly colored edges, small trash)

Use Flag Algebras!

Balancing needed...

Final equation:

$$2\sum_{1 \le i < j \le 4} |X_i| |X_j| - |F| - \frac{26}{9} \sum_{1 \le i \le 4} |X_i|^2 > 0.0276n^2$$

F = wrongly colored edges.

How the first step worked

$$2\sum_{1 \le i < j \le 4} |X_i| |X_j| - |F| - \frac{26}{9} \sum_{1 \le i \le 4} |X_i|^2 > 0.0276n^2$$

Implies:

$$0.244n < |X_i| < 0.256n$$

 $|Trash| < 0.006n$
 $|F| < 0.00008 \binom{n}{2}$

F = wrongly colored edges.

THEOREM # of rainbow K_3s is maximized by

if on 4^k vertices.

THEOREM # of rainbow K_3s is maximized by

THEOREM # of induced $C_5 s$ is maximized by

if on 4^k vertices.

if on 5^k vertices.

THEOREM # of rainbow K₃s is maximized by

THEOREM # of induced $C_5 s$ is maximized by

THEOREM

of induced oriented C_4s is maximized by

if on 4^k vertices.

if on 5^k vertices.

if on 4^k vertices.

THEOREM # of rainbow K₃s is maximized by

THEOREM # of induced $C_5 s$ is maximized by

THEOREM

of induced oriented C_4s is maximized by

if on 4^k vertices.

if on 5^k vertices.

if on 4^k vertices.

Thank you for listening!

