FLAG ALGEBRAS AND SOME APPLICATIONS

Bernard Lidický

Iowa State University

50th CzechSlovak Graph Theory Conference Boží Dar Jun 5, 2015 (Joint results with many friends...)

OUTLINE

- Introduction to the use of Flag Algebras
- Example of Flag Algebras application
- Applications of Flag Algebras

FLAG ALGEBRAS

Seminal paper: Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282. David P. Robbins Prize by AMS for Razborov in 2013

FLAG ALGEBRAS

Seminal paper: Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282. David P. Robbins Prize by AMS for Razborov in 2013

EXAMPLE (GOODMAN, RAZBOROV)

If density of edges is at least $\rho > 0$, what is the minimum density of triangles?

- designed to attack extremal problems.
- works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs)
- the results are in limit (very large graphs)

Applications (incomplete list)

Author	Year	Application/Result
Razborov	2008	EDGE DENSITY VS. TRIANGLE DENSITY
Hladký, Kráľ, Norin	2009	Bounds for the Caccetta-Haggvist conjecture
RAZBOROV	2010	On 3-hypergraphs with forbidden 4-vertex co
HATAMI, HLADKÝ, KRÁĽ, NORINE, RAZBOROV / GRZESIK	2011	Erdős Pentagon problem
HATAMI, HLADKÝ, KRÁĽ, NORIN, RAZBOROV	2012	NON-THREE-COLOURABLE COMMON GRAPHS EXIST
Balogh, Hu, L., Liu / Baber	2012	4-cycles in hypercubes
Reiher	2012	EDGE DENSITY VS. CLIQUE DENSITY
Das, Huang, Ma, Naves, Sudakov	2013	MINIMUM NUMBER OF k -CLIQUES
BABER, TALBOT	2013	A Solution to the 2/3 Conjecture
Falgas-Ravry, Vaughan	2013	Turán density of many 3-graphs
CUMMINGS, KRÁL, PFENDER, SPERFELD, TREGLOWN, YOUNG	2013	Monochromatic triangles in 3-edge colored (
Kramer, Martin, Young	2013	BOOLEAN LATTICE
Balogh, Hu, L., Pikhurko, Udvari, Volec	2013	Monotone permutations
Norin, Zwols	2013	New bound on Zarankiewicz's conjecture
HUANG, LINIAL, NAVES, PELED, SUDAKOV	2014	3-local profiles of graphs
BALOGH, HU, L., PFENDER, VOLEC, YOUNG	2014	RAINBOW TRIANGLES IN 3-EDGE COLORED GRAPHS
Balogh, Hu, L., Pfender	2014	Induced density of C_5
GOAOC, HUBARD, DE VERCLOS, SÉRÉNI, VOLEC	2014	Order type and density of convex subsets
Coregliano, Razborov	2015	Tournaments
Alon, Naves, Sudakov	2015	Phylogenetic trees
· · · · · · · · · · · · · · · · · · ·		

Applications to graphs, oriented graphs, hypergraphs, hypercubes, permutations, crossing number of graphs, order types, geometry, ... Razborov: Flag Algebra: an Interim Report

EXAMPLE EXTREMAL PROBLEM

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

PROBLEM

Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).

- local condition and global parameter
- threshold
- bound and extremal example

FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle.

FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

 ∇

The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

6

FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

 ∇

The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

+ =

FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

 ∇

The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

$$+ = 1$$

$$Type \text{ is a flag induced by labeled vertices}$$

Let G be a 2-edge-colored complete graph on n vertices. Then

Same kind as

Let G be a 2-edge-colored complete graph on n vertices. Then

Expanded version where pictures mean graphs:

$$P\left(\prod \operatorname{in} G\right) = P\left(\prod \operatorname{in} \nabla\right) \cdot P\left(\nabla \operatorname{in} G\right) + P\left(\prod \operatorname{in} \nabla\right)$$

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\bigvee_{v} \times \bigvee_{v} = \bigvee_{v}^{2} + o(1) = \bigvee_{v} + \bigvee_{v} + o(1)$$

o(1) as $|V(G)|
ightarrow \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$v \times v = v + o(1) = v + v + o(1)$$

$$v \times v = \frac{1}{2} v + o(1) = \frac{1}{2} v + o(1)$$

o(1) as $|V(G)|
ightarrow \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$v \times v = v + o(1) = v + v + o(1)$$

$$v \times v = \frac{1}{2} v + o(1) = \frac{1}{2} v + o(1)$$

 $v \times v$: The probability that choosing two vertices u_1, u_2 other than v gives red vu_1 and blue vu_2 .

The probability that choosing two different vertices u_1, u_2 other than v gives one of vu_1 and vu_2 is red and the other is blue. o(1) as $|V(G)| \to \infty$ (will be omitted on next slides)

$$\frac{1}{3} \bigvee = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}^{v}$$

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\frac{1}{3} \bigvee = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v \in V(G)}$$

$$\bigvee \binom{n}{3} = \sum_{v \in V(G)} \bigvee_{v} \binom{n-1}{2}$$

10

$$\bigvee \binom{n}{3} = \sum_{v \in V(G)} \bigvee_{v} \binom{n-1}{2}$$

IDENTITIES SUMMARY

First try for Mantel's theorem

- How to use the equations to prove something
- Gives bounds as well as helps with extremal examples

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue.

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude $\leq \frac{1}{2}$.)

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude $\leq \frac{1}{2}$.)

$$0 \leq \left(1-2 v\right)^2$$

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue.

Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}$.)
 $0 \leq \left(1 - 2 v\right)^2 = \left(1 - 4 v + 4 v + 4 v\right)$

$$\bigvee_{v} \times \bigvee_{v} = \bigvee_{v} + \bigvee_{v}$$

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude $\leq \frac{1}{2}.$) $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v} v + 4 \bigvee_{v} v + 4 \bigvee_{v} v \right)$

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue.

Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}$.)
 $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v} v + 4 \bigvee_{v} v + 4 \bigvee_{v} v \right)$
 $= 1 - 4 \int_{v} + \frac{4}{3} \bigvee_{v} + 4 \bigvee_{v}$

$$\frac{1}{3} \bigvee = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v} = \frac{1}{|V(G)|} \sum_{v \in V(G)} \bigvee_{v}$$

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume \bigvee = 0. (We want to conclude $\leq \frac{1}{2}$.) $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{1} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{1} v + 4 \bigvee_{v}^{1} + 4 \bigvee_{v}^{1} \right)$ $= \frac{2}{3} + \frac{1}{3} + \frac{$

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue.

$$0 \le \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{\bullet} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v \right)$$
$$= 1 - 4 \int_{v}^{\bullet} + \frac{4}{3} \bigvee_{v}^{\bullet}$$

$$= \frac{2}{3} \mathbf{\nabla} + \frac{1}{3} \mathbf{\nabla}$$

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume \bigvee = 0. (We want to conclude $\leq \frac{1}{2}$.) $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{\bullet} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v \right)$ = 1 - 4 $+ \frac{4}{3}$ = 1 - 2 $-\frac{2}{3}$ 2 = $\frac{4}{3}$ + $\frac{2}{3}$

EXAMPLE - MANTEL'S THEOREM, 1ST TRY THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume \bigvee = 0. (We want to conclude $\leq \frac{1}{2}$.) $0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{\bullet} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v + 4 \bigvee_{v}^{\bullet} v \right)$ = 1 - 4 $+ \frac{4}{3}$ = 1 - 2 $-\frac{2}{3}$ 2 = $\frac{4}{3}$ + $\frac{2}{3}$ $\leq 1-2$

EXAMPLE - STABILITY FOR MANTEL

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$

EXAMPLE - STABILITY FOR MANTEL

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$.
 $0 \le 1 - 2$ $-\frac{2}{3}$

EXAMPLE - STABILITY FOR MANTEL

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$.
 $0 \le 1 - 2$ $-\frac{2}{3}$ $= \frac{2}{3}$
Assume
$$\checkmark = 0$$
 and $= \frac{1}{2}$. Goal is $G = \bigcirc$.
 $0 \le 1 - 2$ $-\frac{2}{3}$ \checkmark
 $0 \le -\frac{2}{3}$ \checkmark
 $0 \ge \checkmark$

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$
 $0 \le 1 - 2$ $-\frac{2}{3}$ $0 \le -\frac{2}{3}$ $0 \ge 0$
 $0 \ge 0$
Only $= 0$ and $= 0$ appear in G .

Assume
$$= 0$$
 and $= \frac{1}{2}$. Goal is $G = 0$
 $0 \le 1 - 2$ $-\frac{2}{3}$ $0 \le -\frac{2}{3}$ $0 \ge 0$
 $0 \ge 0$
Only $= 0$ and $= 0$ appear in G .

Assume
$$\checkmark = 0$$
 and $\downarrow = \frac{1}{2}$. Goal is $G = \bigcirc$.
 $0 \le 1 - 2 \qquad -\frac{2}{3} \checkmark$
 $0 \le -\frac{2}{3} \checkmark$
 $0 \ge \checkmark$
Only \checkmark and \checkmark appear in G .

Assume
$$\checkmark = 0$$
 and $= \frac{1}{2}$. Goal is $G = \bigcirc$.
 $0 \le 1 - 2 \qquad -\frac{2}{3} \checkmark$
 $0 \le -\frac{2}{3} \checkmark$
 $0 \ge \checkmark$
Only \checkmark and \checkmark appear in G .

Assume
$$eigenedlet = 0$$
 and $eigenedlet = \frac{1}{2}$. Goal is $G = eigenedlet = 0$.
 $0 \le 1 - 2$ $eigenedlet = \frac{1}{2}$. Goal is $G = eigenedlet = 0$.
 $0 \le -\frac{2}{3}$ $eigenedlet = \frac{1}{2}$.
 $0 \le -\frac{2}{3}$ $eigenedlet = \frac{1}{2}$.
 $0 \ge eigenedlet = \frac{1}{2}$.
Only $eigenedlet = 0$ and $eigenedlet = \frac{1}{2}$.

Assume
$$eigenedlet = 0$$
 and $eigenedlet = \frac{1}{2}$. Goal is $G = eigenedlet = 0$.
 $0 \le 1 - 2$ $eigenedlet = \frac{1}{2}$. Goal is $G = eigenedlet = 0$.
 $0 \le -\frac{2}{3}$ $eigenedlet = \frac{1}{2}$.
 $0 \ge -\frac{2}{3}$ $eigenedlet = \frac{1}{2}$.
 $0 \ge -\frac{2}{3}$ $eigenedlet = \frac{1}{2}$.
Only $eigenedlet = 0$ and $eigenedlet = \frac{1}{2}$.

• consider 2-edge-colored complete graphs G_1, G_2, \dots $(|G_n| \to \infty)$

- consider 2-edge-colored complete graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F

- consider 2-edge-colored complete graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F

- consider 2-edge-colored complete graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs ightarrow [0,1]

- consider 2-edge-colored complete graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$

- consider 2-edge-colored complete graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$
- the set of limit objects LIM = homomorphisms $q: q(F) \ge 0$

- consider 2-edge-colored complete graphs G_1, G_2, \dots $(|G_n| \to \infty)$
- $p_n(F) :=$ probability that random |F| vertices of G_n induces F
- sequence (G_n) is convergent if $p_n(F)$ converge for all F
- limit object function q: all finite 2-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$
- the set of limit objects LIM = homomorphisms q: $q(F) \ge 0$

• we optimize on
$$\mathsf{LIM}^{\mathrm{T}} = \left\{ q \in \mathsf{LIM} : q\left(\bigvee \right) = 0 \right\}$$
$$\frac{1}{2} \ge \max_{q \in \mathsf{LIM}^{\mathrm{T}}} q\left(\begin{array}{c} \bullet \end{array} \right)$$

More automatic approach

• How to use computer to guess the right equation for you.

$$0 \leq \left(1 - 2 \left[\begin{array}{c} \mathbf{v} \\ v \end{array} \right)^2 \right)^2$$

THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

Assume edges are red and non-edges are blue.

THEOREM (MANTEL 1907)

A triangle-free graph contains at most $\frac{1}{4}n^2$ edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude $\leq \frac{1}{2}$.)

THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume = 0. (We want to conclude $\leq \frac{1}{2}$.) $= 0 + \frac{1}{3} + \frac{2}{3} +$

THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume 💙 = 0. (We want to conclude $\leq \frac{1}{2}$.) $= 0 + \frac{1}{3} + \frac{2}{3}$ $\leq \frac{2}{3} \left(\checkmark + \checkmark + \checkmark \right)$

THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume = 0. (We want to conclude $\leq \frac{1}{2}$.) $= 0 \nabla + \frac{1}{3} \nabla + \frac{2}{3} \nabla$ $\int \leq \frac{2}{3} \left(\mathbf{\nabla} + \mathbf{\nabla} + \mathbf{\nabla} \right)$ $1 = \checkmark + \checkmark + \checkmark + \checkmark + \checkmark$

THEOREM (MANTEL 1907) A triangle-free graph contains at most $\frac{1}{4}n^2$ edges. Assume edges are red and non-edges are blue. Assume = 0. (We want to conclude $\leq \frac{1}{2}$.) =0 $+\frac{1}{3}$ $+\frac{2}{3}$ $\int \leq \frac{2}{3} \left(\mathbf{\nabla} + \mathbf{\nabla} + \mathbf{\nabla} \right)$ $1 = \checkmark + \checkmark + \checkmark + \checkmark$

Assume
$$= 0.$$
 (We want to conclude $\leq \frac{1}{2}$.)
 $= 0 + \frac{1}{2} + \frac{1}{2} + \frac{2}{2}$

EXAMPLE - MANTEL'S THEOREM, 2ND TRY Assume = 0. (We want to conclude $\leq \frac{1}{2}$.) $= 0 + \frac{1}{3} + \frac{2}{3} + \frac{2}{3}$

Idea: find $c_1, c_2, c_3 \in \mathbb{R}$ such that for every graph G

$$0 \leq c_1 + c_2 + c_3$$

Example - Mantel's Theorem, 2nd Try Assume = 0. (We want to conclude $\leq \frac{1}{2}$.) $= 0 + \frac{1}{3} + \frac{2}{3}$ Idea: find $c_1, c_2, c_3 \in \mathbb{R}$ such that for every graph G $0\leq c_1 \vee + c_2 \vee + c_3 \vee .$ After summing together $\leq c_1 \bigvee + \left(\frac{1}{3} + c_2\right) \bigvee + \left(\frac{2}{3} + c_3\right) \bigvee$ and $\leq \max\left\{ (0+c_1), \frac{1}{3}+c_2, \frac{2}{3}+c_3 \right\}.$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$0 \leq \left(\left[\begin{array}{c} \bullet \\ v \end{array}, \begin{array}{c} \bullet \\ v \end{array} \right] \right) \left(\begin{array}{c} \bullet \\ c \end{array} \right) \left(\left[\begin{array}{c} \bullet \\ v \end{array}, \begin{array}{c} \bullet \\ v \end{array} \right] \right)^{T}$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

CANDIDATES FOR c_1, c_2, c_3

 $\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite)}$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$= \mathbf{v} + \frac{1}{3}\mathbf{v} + \frac{2}{3}\mathbf{v}$$
$$0 \le a\mathbf{v} + \frac{a+2c}{3}\mathbf{v} + \frac{b+2c}{3}\mathbf{v}$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$= + \frac{1}{3} + \frac{2}{3} + \frac{2}{3}$$

$$0 \le a + \frac{a+2c}{3} + \frac{b+2c}{3} + \frac{b+2c}{3}$$

$$\leq \max\left\{a, \frac{1+a+2c}{3}, \frac{2+b+2c}{3}\right\}.$$

$$\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) \succcurlyeq 0 \text{ (matrix is positive semidefinite}$$

$$= \checkmark + \frac{1}{3} \checkmark + \frac{2}{3} \checkmark$$

$$0 \le a \checkmark + \frac{a + 2c}{3} \checkmark + \frac{b + 2c}{3} \checkmark$$

$$= \max \left\{ a, \frac{1 + a + 2c}{3}, \frac{2 + b + 2c}{3} \right\}.$$
Try
$$\begin{pmatrix} a & c \\ c & b \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}.$$

$$= \bigvee_{a} + \frac{1}{3} \bigvee_{a} + \frac{2}{3} \bigvee_{a}$$

$$0 \le a \bigvee_{a} + \frac{a + 2c}{3} \bigvee_{a} + \frac{b + 2c}{3} \bigvee_{a}$$

$$\int_{a} \le \max \left\{ a, \frac{1 + a + 2c}{3}, \frac{2 + b + 2c}{3} \right\}.$$
Try
$$\begin{pmatrix} a & c \\ c & b \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}.$$
It gives
$$\int_{a} \le \max \left\{ \frac{1}{2}, \frac{1}{6}, \frac{1}{2} \right\} = \frac{1}{2}.$$

OPTIMIZING *a*, *b*, *c*

$$\leq \max\left\{a, \frac{1+a+2c}{3}, \frac{2+b+2c}{3}\right\}$$

$$(SDP)\left\{\begin{array}{l} \text{Minimize } d\\ \text{subject to } a \leq d\\ \frac{1+a+2c}{3} \leq d\\ \frac{2+b+2c}{3} \leq d\\ \begin{pmatrix}a & c\\ c & b\end{pmatrix} \geq 0\end{array}\right.$$

(*SDP*) can be solved on computers using CSDP or SDPA. Rounding may be needed for exact results.

Recall **v** is the probability that 3 randomly chosen vertices form a red triangle.

FLAG ALGEBRAS

J. Balogh

P. Hu

Hypercubes and posets

H. Liu B. L.

Application to sparse structure.

Hypercube

Q_n is *n*-dimensional hypercube (*n*-cube)

HYPERCUBE

Q_n is *n*-dimensional hypercube (*n*-cube)

Problem (Erdős 1984)

What is the maximum number of edges in a subgraph of Q_n with no Q_2 ?

Hypercube

Q_n is *n*-dimensional hypercube (*n*-cube)

PROBLEM (ERDŐS 1984)What is the maximum number of edges in a
subgraph of Q_n with no Q_2 ?maximizesubject to

LOWER BOUND

CONJECTURE (ERDŐS 1984) In \mathcal{Q}_n where $n \to \infty$:

LOWER BOUND

CONJECTURE (ERDŐS 1984) In Q_n where $n \to \infty$:

RESULTS ABOUT HYPERCUBES

Results about hypercubes

Results about hypercubes

```
If = 0 then

THEOREM (CHUNG 1992)

\leq 0.62284.

THEOREM (THOMASON AND WAGNER 2009)

\leq 0.62256. \leq 0.62083.
```

Results about hypercubes

Let \mathcal{B}_n denote *n*-dimensional boolean lattice. Let *F* be a subposet of \mathcal{B}_n not containing \Diamond .

Let \mathcal{B}_n denote *n*-dimensional boolean lattice. Let *F* be a subposet of \mathcal{B}_n not containing \Diamond .

THEOREM $|F| \leq (c + o(1)) {n \choose \lfloor n/2 \rfloor}$, where $c \leq 2.3$ [Griggs, Lu 2009] $c \leq 2.284$ [Axenovich, Manske, Martin 2012] $c \leq 2.273$ [Griggs, Li, Lu 2011] $c \leq 2.25$ [Kramer, Martin, Young 2013]

Let \mathcal{B}_n denote *n*-dimensional boolean lattice. Let *F* be a subposet of \mathcal{B}_n not containing \Diamond .

THEOREM $|F| \leq (c + o(1)) {n \choose \lfloor n/2 \rfloor}$, where $c \leq 2.3$ [Griggs, Lu 2009] $c \leq 2.284$ [Axenovich, Manske, Martin 2012] $c \leq 2.273$ [Griggs, Li, Lu 2011] $c \leq 2.25$ [Kramer, Martin, Young 2013]

 \mathcal{B}_7

If F is a subposet of only the middle three layers of B_n , then $c \leq 2.1547$ [Manske, Shen 2013] $c \leq 2.15121$ [Balogh, Hu, L., Liu 2014]

Let \mathcal{B}_n denote *n*-dimensional boolean lattice. Let *F* be a subposet of \mathcal{B}_n not containing \Diamond .

THEOREM $|F| \leq (c + o(1)) {n \choose \lfloor n/2 \rfloor}$, where $c \leq 2.3$ [Griggs, Lu 2009] $c \leq 2.284$ [Axenovich, Manske, Martin 2012] $c \leq 2.273$ [Griggs, Li, Lu 2011] $c \leq 2.25$ [Kramer, Martin, Young 2013]

 \mathcal{B}_7

If F is a subposet of only the middle three layers of B_n , then $c \leq 2.1547$ [Manske, Shen 2013] $c \leq 2.15121$ [Balogh, Hu, L., Liu 2014] c = 2 [Kramer, Martin 2015, announced]

J. Balogh

P. Hu

B. L.

Permutations

O. Pikhurko

B. Udvari

J. Volec

Application with exact result.

PERMUTATIONS AND EXTREMAL PROBLEMS

Problem

What is the minimum number of monotone subsequences of size k in a permutation of [n]?

PERMUTATIONS AND EXTREMAL PROBLEMS

Problem

What is the minimum number of monotone subsequences of size k in a permutation of [n]?

PERMUTATIONS AND EXTREMAL PROBLEMS

Problem

What is the minimum number of monotone subsequences of size k in a permutation of [n]?

Conjecture

Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized by a permutation on [n] with k - 1 increasing runs of as equal lengths as possible.

Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized by a permutation on [n] with k - 1 increasing runs of as equal lengths as possible.

THEOREM (SAMOTIJ, SUDAKOV '14+)

Myers' conjecture is true for sufficiently large k and $n \le k^2 + ck^{3/2} \log k$, where c is an absolute positive constant.

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+) Myers' conjecture is true for k = 4 and n sufficiently large.

Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized by a permutation on [n] with k - 1 increasing runs of as equal lengths as possible.

THEOREM (SAMOTIJ, SUDAKOV '14+)

Myers' conjecture is true for sufficiently large k and $n \le k^2 + ck^{3/2} \log k$, where c is an absolute positive constant.

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+) Myers' conjecture is true for k = 4 and n sufficiently large.

Use of flag algebras, k = 5, 6 also doable, 7 not.

FROM PERMUTATIONS TO PERMUTATION GRAPHS

FROM PERMUTATIONS TO PERMUTATION GRAPHS

EXTREMAL EXAMPLE (k = 4)

As flag algebra question (k = 4)

(4, 3, 2, 1)

As flag algebra question (k = 4)

As flag algebra question (k = 4)

As flag algebra question (k = 4)

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+)

$$+ \ge \frac{1}{27}$$

for every permutation graph.

ONLY FOR PERMUTATION GRAPHS

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+)

$$\min\left(\left| \underbrace{\mathbf{X}} + \underbrace{\mathbf{X}} \right| \right) = \frac{1}{27}$$

over permutation graphs (and extremal permutations described using Myers' results - stability arguments).

ONLY FOR PERMUTATION GRAPHS

THEOREM (BALOGH, HU, L., PIKHURKO, UDVARI, VOLEC '14+)

$$\min\left(\left| \underbrace{\mathbf{X}} + \underbrace{\mathbf{X}} \right| \right) = \frac{1}{27}$$

over permutation graphs (and extremal permutations described using Myers' results - stability arguments).

THEOREM (SPERFELD '12; THOMASON '89)

$$\frac{1}{35} < \min\left(\left| \underbrace{\mathbf{M}} + \underbrace{\mathbf{M}} \right| \right) < \frac{1}{33}$$

over all sufficiently large 2-edge-colored complete graphs.

FLAG ALGEBRAS

F. Pfender B. L. J. Balogh

Rainbow Triangles

P. Hu J. Volec M. Young

Application with exact result and iterated extremal construction.

THE PROBLEM

$$F(n) := \max \bigvee$$
 over all 3-edge-colorings of K_n

THE PROBLEM $F(n) := \max \bigvee$ over all 3-edge-colorings of K_n X_2 X_1 X_4 X_3

APPLICATIONS

THE PROBLEM

THE PROBLEM

 $F(n) := \max \bigvee$ over all 3-edge-colorings of K_n

Conjecture (Erdős, Sós 1972-)

This construction is the best possible. In other words,

$$F(n) = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 + \sum_i F(x_i),$$

where $x_1 + x_2 + x_3 + x_4 = n$, and $|x_i - x_j| \le 1$.

THE PROBLEM

 $F(n) := \max \bigvee$ over all 3-edge-colorings of K_n

Conjecture (Erdős, Sós 1972-)

This construction is the best possible. In other words,

$$F(n) = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 + \sum_i F(x_i),$$

where $x_1 + x_2 + x_3 + x_4 = n$, and $|x_i - x_j| \le 1$.

Our result: The conjecture is true for *n* large and for any $n = 4^k$.

DIRECT APPLICATION OF FLAG ALGEBRAS $F(n) := \max \bigvee$ over all 3-edge-colorings of K_n

THEOREM (BALOGH, HU, L., PFENDER, VOLEC, YOUNG)

$$F(n) = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4 + \sum_i F(x_i),$$

where $x_1 + x_2 + x_3 + x_4 = n$, and $|x_i - x_j| \le 1$ and n is large or $n = 4^k$.

Construction
$$\mathbf{X}$$
: $\mathbf{V} \ge 0.4$
FA: $\mathbf{V} \le 0.4006$

Usual stability approach with excluded subgraphs does not work (nothing is excluded). Not tight result from FA is typical if the extremal construction is iterated.

RESULTS WITH ITERATED CONSTRUCTIONS

THEOREM (FALGAS-RAVRY, VAUGHAN 2012)

RESULTS WITH ITERATED CONSTRUCTIONS

THEOREM (FALGAS-RAVRY, VAUGHAN 2012)

THEOREM (HUANG 2014) Density of is maximized by

RESULTS WITH ITERATED CONSTRUCTIONS

THEOREM (FALGAS-RAVRY, VAUGHAN 2012)

THEOREM (HLADKÝ, KRÁL, NORIN) Density of vis maximized by

RESULTS WITH ITERATED CONSTRUCTIONS

THEOREM (FALGAS-RAVRY, VAUGHAN 2012)

THEOREM (HLADKÝ, KRÁL, NORIN) Density of vis maximized by

THEOREM (PIKHURKO 2014)

Iterated blow-up of r-graph is extremal for $\pi(\mathcal{F})$ for some family \mathcal{F} .

Related results

THEOREM (BALOGH, HU, L., PFENDER, 2014+)

of induced C_5s is maximized by p

of induced oriented C_4s is maximized by

L. Hogben

B. L.

Crossing numbers

F. Pfender

A. Ruiz

Application to graph drawing.

For a graph G, cr(G) is crossing number.

Conjecture (Zarankiewicz 1954)

$$cr(K_{m,n}) = \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{(n-1)}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{(m-1)}{2} \right\rfloor.$$

THEOREM (NORIN, ZWOLS 2013+)

$$cr(\mathcal{K}_{m,n}) \geq 0.9 \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{(n-1)}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{(m-1)}{2} \right\rfloor$$

for large m and n. (Zarankiewicz's conjecture is 90% true)

For a graph G, $\overline{cr}(G)$ is the rectilinear crossing number.

Conjecture

THEOREM (GETHNER, HOGBEN, L., PFENDER, RUIZ, YOUNG) $\overline{cr}(K_{n_1,n_2,n_3})$ conjecture is 97.3% true.

PROBLEM What about more partite graphs?

Ramsey numbers

F. Pfender B.L.

Application to something seemingly unrelated.

DEFINITION

 $R(G_1, G_2, \ldots, G_k)$ is the smallest integer *n* such that any *k*-edge coloring of K_n contains a copy of G_i in color *i* for some $1 \le i \le k$.

DEFINITION

 $R(G_1, G_2, \ldots, G_k)$ is the smallest integer *n* such that any *k*-edge coloring of K_n contains a copy of G_i in color *i* for some $1 \le i \le k$.

THEOREM (RAMSEY 1930) $R(K_m, K_n)$ is finite.

 $R(G_1, \ldots, G_k)$ is finite

Questions:

- study how $R(G_1, \ldots, G_k)$ grows if G_1, \ldots, G_k grow (large)
- study $R(G_1, \ldots, G_k)$ for fixed G_1, \ldots, G_k (small)

THEOREM (RAMSEY 1930) $R(K_m, K_n)$ is finite.

 $R(G_1, \ldots, G_k)$ is finite

Questions:

- study how $R(G_1, \ldots, G_k)$ grows if G_1, \ldots, G_k grow (large)
- study $R(G_1, \ldots, G_k)$ for fixed G_1, \ldots, G_k (small)

Radziszowski - *Small Ramsey Numbers* Electronic Journal of Combinatorics - Survey

[Erdős] Suppose aliens invade the earth and threaten to obliterate it. in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.

New upper bounds (so far)

Problem	Lower	New upper	Old upper
$R(K_4^-, K_4^-, K_4^-)$	28	28	30
$R(K_3, K_4^-, K_4^-)$	21	23	27
$R(K_4, K_4^-, K_4^-)$	33	47	59
$R(K_4, K_4, K_4^-)$	55	104	113
$R(C_3, C_5, C_5)$	17	18	21?
$R(K_4, K_7^-)$	37	52	59
$R(K_{2,2,2}, K_{2,2,2})$	30	32	60?
$R(K_{5}^{-}, K_{6}^{-})$	31	38	39
$R(K_5, K_6^-)$	43	62	67

Thank you for your attention!