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Outline

• Introduction to the use of Flag Algebras

• Example of Flag Algebras application

• Applications of Flag Algebras
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Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic
Logic 72 (2007), 1239–1282.
David P. Robbins Prize by AMS for Razborov in
2013

Example (Goodman, Razborov)

If density of edges is at least ρ > 0, what is the minimum density
of triangles?

• designed to attack extremal problems.

• works well if constraints as well as desired value can be computed
by checking small subgraphs (or average over small subgraphs)

• the results are in limit (very large graphs)
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Applications (incomplete list)
Author Year Application/Result
Razborov 2008 edge density vs. triangle density
Hladký, Krá ,l, Norin 2009 Bounds for the Caccetta-Haggvist conjecture
Razborov 2010 On 3-hypergraphs with forbidden 4-vertex configurations
Hatami, Hladký,Krá ,l,Norine,Razborov / Grzesik 2011 Erdős Pentagon problem
Hatami, Hladký, Krá ,l, Norin, Razborov 2012 Non-Three-Colourable Common Graphs Exist
Balogh, Hu, L., Liu / Baber 2012 4-cycles in hypercubes
Reiher 2012 edge density vs. clique density
Das, Huang, Ma, Naves, Sudakov 2013 minimum number of k-cliques
Baber, Talbot 2013 A Solution to the 2/3 Conjecture
Falgas-Ravry, Vaughan 2013 Turán density of many 3-graphs
Cummings, Krá ,l, Pfender, Sperfeld, Treglown, Young 2013 Monochromatic triangles in 3-edge colored graphs
Kramer, Martin, Young 2013 Boolean lattice
Balogh, Hu, L., Pikhurko, Udvari, Volec 2013 Monotone permutations
Norin, Zwols 2013 New bound on Zarankiewicz’s conjecture
Huang, Linial, Naves, Peled, Sudakov 2014 3-local profiles of graphs
Balogh, Hu, L., Pfender, Volec, Young 2014 Rainbow triangles in 3-edge colored graphs
Balogh, Hu, L., Pfender 2014 Induced density of C5
Goaoc, Hubard, de Verclos, Séréni, Volec 2014 Order type and density of convex subsets
Coregliano, Razborov 2015 Tournaments
Alon, Naves, Sudakov 2015 Phylogenetic trees
... ... ...

Applications to graphs, oriented graphs, hypergraphs, hypercubes,
permutations, crossing number of graphs, order types, geometry,
. . . Razborov: Flag Algebra: an Interim Report
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Example extremal problem

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Problem
Maximize a graph parameter (# of edges) over a class of graphs
(triangle-free).

• local condition and global parameter

• threshold

• bound and extremal example
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Flag algebras definitions
Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in
G span a red triangle.

The probability that three random vertices in
G span a triangle with one red and two blue
edges.

v

The probability that a random vertex other
than v is connected to v ∈ V (G ) by a red
edge, i.e., the red degree of v divided by n− 1.

+ =

1

Type is a flag induced by labeled vertices

1 2

Flag
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

+ + + = 1.

Same kind as

+ = 1.
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

=
3

3
+

2

3
+

1

3
+

0

3
.

Expanded version where pictures mean graphs:

P

(
inG

)
= P

(
in

)
·P
(

inG

)
+P

(
in

)
·P
( )

+· · ·
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

v
×

v
=

v

?
+ o(1) =

v
+

v
+ o(1)

v
×

v
=

1

2 v

?
+ o(1) =

1

2 v
+

1

2 v
+ o(1)

v
×

v
: The probability that choosing two vertices u1, u2

other than v gives red vu1 and blue vu2.

v

?
: The probability that choosing two different vertices u1, u2

other than v gives one of vu1 and vu2 is red and the other is blue.

o(1) as |V (G )| → ∞ (will be omitted on next slides)
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices. Then

1

3
=

1

|V (G )|
∑

v∈V (G)
v

=
1

|V (G )|
∑

v∈V (G)
v

(
n

3

)
=

∑
v∈V (G)

v

(
n − 1

2

)

(
n

3

)
=

1

3

∑
v∈V (G)

v

(
n − 1

2

)
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Identities Summary
Let G be a 2-edge-colored complete graph on n vertices. Then

1 = + + +

=
3

3
+

2

3
+

1

3
+

0

3

v
×

v
=

v
+

v

v
×

v
=

1

2 v
+

1

2 v

1

3
=

1

|V (G )|
∑

v∈V (G)
v

; =
1

|V (G )|
∑

v∈V (G)
v
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First try for Mantel’s theorem

• How to use the equations to prove something

• Gives bounds as well as helps with extremal examples
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Example - Mantel’s theorem, 1st try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

0 ≤

1

n

∑
v

(
1− 2

v

)2

=
1

n

∑
v

(
1− 4

v
+ 4

v
+ 4

v

)

= 1− 4 +
4

3
+ 4

= 1− 2 − 2

3

≤ 1− 2

v
×

v
=

v
+

v

2

= 3 + 3

+

13
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Example - stability for Mantel

Assume = 0 and = 1
2 . Goal is G = .

0 ≤ 1− 2 − 2

3

0 ≤ −2

3

0 ≥

Only and appear in G .
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Flag Algebras - formal approach

• consider 2-edge-colored complete graphs G1,G2, . . . (|Gn| → ∞)

• pn(F ) := probability that random |F | vertices of Gn induces F

• sequence (Gn) is convergent if pn(F ) converge for all F

• limit object – function q: all finite 2-edge-colored graphs → [0, 1]

• q yields homomorphism from linear combinations of graphs to R

• the set of limit objects LIM = homomorphisms q: q(F ) ≥ 0

• we optimize on LIMT =

{
q ∈ LIM : q

( )
= 0

}
1

2
≥ max

q∈LIMT
q

( )

15
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{
q ∈ LIM : q

( )
= 0

}
1

2
≥ max

q∈LIMT
q

( )
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More automatic approach

• How to use computer to guess the right equation for you.

0 ≤
(

1− 2
v

)2
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Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
1 = + +

+

≤ 2

3

17



Flag Algebras First try for Mantel More automatic approach Applications

Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
1 = + +

+

≤ 2

3

17



Flag Algebras First try for Mantel More automatic approach Applications

Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
1 = + +

+

≤ 2

3

17



Flag Algebras First try for Mantel More automatic approach Applications

Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)

1 = + +

+

≤ 2

3

17



Flag Algebras First try for Mantel More automatic approach Applications

Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
1 = + + +

≤ 2

3

17



Flag Algebras First try for Mantel More automatic approach Applications

Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
1 = + +

+

≤ 2

3

17



Flag Algebras First try for Mantel More automatic approach Applications

Example - Mantel’s theorem, 2nd try

Theorem (Mantel 1907)

A triangle-free graph contains at most 1
4n

2 edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
1 = + +

+

≤ 2

3

17



Flag Algebras First try for Mantel More automatic approach Applications

Example - Mantel’s theorem, 2nd try

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

Idea: find c1, c2, c3 ∈ R such that for every graph G

0 ≤ c1 + c2 + c3 .

After summing together

≤ c1 +

(
1

3
+ c2

)
+

(
2

3
+ c3

)
and

≤ max

{
(0 + c1) ,

1

3
+ c2,

2

3
+ c3

}
.
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Candidates for c1, c2, c3

0 ≤

1

n

∑
v

(
v
,

v

)(
a c
c b

)(
v
,

v

)T

=

1

n

∑
v

a
v

?
+ b

v

?
+

1

2

c
v

?

+
1

2
c

v

?

= a +
a + 2c

3
+

b + 2c

3

+ b

c1 = a, c2 =
a + 2c

3
, c3 =

b + 2c

3

(
a c
c b

)
< 0 (matrix is positive semidefinite)
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Using c1, c2, c3

= +
1

3
+

2

3

0 ≤ a +
a + 2c

3
+

b + 2c

3

≤ max

{
a,

1 + a + 2c

3
,

2 + b + 2c

3

}
.

Try (
a c
c b

)
=

(
1/2 −1/2
−1/2 1/2

)
.

It gives

≤ max

{
1

2
,

1

6
,

1

2

}
=

1

2
.

(
a c
c b

)
< 0 (matrix is positive semidefinite)
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Optimizing a, b, c

≤ max

{
a,

1 + a + 2c

3
,

2 + b + 2c

3

}

(SDP)



Minimize d

subject to a ≤ d
1+a+2c

3 ≤ d
2+b+2c

3 ≤ d(
a c

c b

)
< 0

(SDP) can be solved on computers using CSDP or SDPA.
Rounding may be needed for exact results.
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Applications

Recall is the probability that 3 randomly chosen vertices

form a red triangle.

22
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J. Balogh P. Hu

Hypercubes and posets

H. Liu B. L.

Application to sparse structure.
23
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Hypercube
Qn is n-dimensional hypercube (n-cube)

Q1 Q2 Q3

Problem (Erdős 1984)

What is the maximum number of edges in a
subgraph of Qn with no Q2?

maximize subject to = 0

24
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Lower bound

Conjecture (Erdős 1984)

In Qn where n→∞:

= 0⇒ ≤ 1

2
.

Q7 Q7

By removing every second layer, ≥ 1/2.

As posets

25
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Results about hypercubes

If = 0 then

Theorem (Chung 1992)

≤ 0.62284.

Theorem (Thomason and Wagner 2009)

≤ 0.62256.

≤ 0.62083.

Theorem (Balogh, Hu, L., Liu 2014; Baber 2014+)

≤ 0.6068. (Uses Q3 instead of Q2.)
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Related results - boolean lattice

Let Bn denote n-dimensional boolean lattice.
Let F be a subposet of Bn not containing ♦.

Theorem
|F | ≤ (c + o(1))

( n
bn/2c

)
, where

c ≤ 2.3 [Griggs, Lu 2009]
c ≤ 2.284 [Axenovich, Manske, Martin 2012]
c ≤ 2.273 [Griggs, Li, Lu 2011]
c ≤ 2.25 [Kramer, Martin, Young 2013]

If F is a subposet of only the middle three layers of Bn, then
c ≤ 2.1547 [Manske, Shen 2013]
c ≤ 2.15121 [Balogh, Hu, L., Liu 2014]
c = 2 [Kramer, Martin 2015, announced]

B7
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J. Balogh P. Hu B. L.

Permutations

O. Pikhurko B. Udvari J. Volec

Application with exact result.
28
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Permutations and extremal problems

Problem
What is the minimum number of monotone subsequences of size k
in a permutation of [n]?

k = 3
n = 5

(5,4,1,2,3)

(5,4,1),(5,4,2),(5,4,3)
(1,2,3)

(4,5,1,2,3)

(1,2,3)
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Conjecture

Conjecture (Myers 2002)

The number of monotone subsequences of length
k is minimized by a permutation on [n] with k − 1
increasing runs of as equal lengths as possible.

k = 4, n = 15 30
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Extremal case is not unique
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Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized
by a permutation on [n] with k − 1 increasing runs of as equal
lengths as possible.

Theorem (Samotij, Sudakov ’14+)

Myers’ conjecture is true for sufficiently large k and
n ≤ k2 + ck3/2 log k, where c is an absolute positive constant.

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

Myers’ conjecture is true for k = 4 and n sufficiently large.

(1,2,3,4) (4,3,2,1)

Use of flag algebras, k = 5, 6 also doable, 7 not.

32



Flag Algebras First try for Mantel More automatic approach Applications

Conjecture (Myers 2002)

The number of monotone subsequences of length k is minimized
by a permutation on [n] with k − 1 increasing runs of as equal
lengths as possible.

Theorem (Samotij, Sudakov ’14+)

Myers’ conjecture is true for sufficiently large k and
n ≤ k2 + ck3/2 log k, where c is an absolute positive constant.

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

Myers’ conjecture is true for k = 4 and n sufficiently large.

(1,2,3,4) (4,3,2,1)

Use of flag algebras, k = 5, 6 also doable, 7 not.

32



Flag Algebras First try for Mantel More automatic approach Applications

From permutations to permutation graphs

(1,2) (2,1)

k = 3
n = 5

(5,4,1,2,3) 1 2

3

4

5
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Extremal example (k = 4)
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As flag algebra question (k = 4)

(1,2,3,4) (4,3,2,1)

minimize +

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

+ ≥ 1

27

for every permutation graph.
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Only for permutation graphs

Theorem (Balogh, Hu, L., Pikhurko, Udvari, Volec ’14+)

min

(
+

)
=

1

27

over permutation graphs (and extremal permutations described
using Myers’ results - stability arguments).

Theorem (Sperfeld ’12; Thomason ’89)

1

35
< min

(
+

)
<

1

33

over all sufficiently large 2-edge-colored complete graphs.
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F. Pfender B. L. J. Balogh

Rainbow Triangles

P. Hu J. Volec M. Young

Application with exact result and iterated extremal construction.
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The problem

F (n) := max over all 3-edge-colorings of Kn

Conjecture (Erdős, Sós 1972-)

This construction is the best possible. In other words,

F (n) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 +
∑

i
F (xi ),

where x1 + x2 + x3 + x4 = n, and |xi − xj | ≤ 1.

Our result: The conjecture is true for n large and for any n = 4k .
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Direct application of Flag Algebras

F (n) := max over all 3-edge-colorings of Kn

Theorem (Balogh, Hu, L., Pfender, Volec, Young)

F (n) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 +
∑

i
F (xi ),

where x1 + x2 + x3 + x4 = n, and |xi − xj | ≤ 1 and n is large or
n = 4k .

Construction : ≥ 0.4

FA: ≤ 0.4006

Usual stability approach with excluded subgraphs does not work
(nothing is excluded). Not tight result from FA is typical if the
extremal construction is iterated.
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Results with iterated constructions

Theorem (Falgas-Ravry, Vaughan 2012)

Density of , and is maximized by .

Theorem (Huang 2014)

Density of ... is maximized by .

Theorem (Hladký, Krá ,l, Norin)

Density of is maximized by .

Theorem (Pikhurko 2014)

Iterated blow-up of r -graph is extremal for π(F) for some family F .
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Related results

Theorem (Balogh, Hu, L., Pfender, 2014+)

# of induced C5s is maximized by

Theorem (Hu, L., Pfender, Volec)

# of induced oriented C4s is maximized by
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E. Gethner L. Hogben B. L.

Crossing numbers

F. Pfender A. Ruiz M. Young

Application to graph drawing.
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For a graph G , cr(G ) is crossing number.

Conjecture (Zarankiewicz 1954)

cr(Km,n) =

⌊
n

2

⌋⌊
(n − 1)

2

⌋⌊
m

2

⌋⌊
(m − 1)

2

⌋
.

Theorem (Norin, Zwols 2013+)

cr(Km,n) ≥ 0.9

⌊
n

2

⌋⌊
(n − 1)

2

⌋⌊
m

2

⌋⌊
(m − 1)

2

⌋
for large m and n. (Zarankiewicz’s conjecture is
90% true)

K6,6
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For a graph G , cr(G ) is the rectilinear crossing number.

Conjecture

cr(Kn1,n2,n3) is minimized by K5,5,5

Theorem (Gethner, Hogben, L., Pfender, Ruiz, Young)

cr(Kn1,n2,n3) conjecture is 97.3% true.

Problem
What about more partite graphs?
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Ramsey numbers

F. Pfender B.L.

Application to something seemingly unrelated.
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Definition
R(G1,G2, . . . ,Gk) is the smallest integer n such that any k-edge
coloring of Kn contains a copy of Gi in color i for some 1 ≤ i ≤ k .

R(K3,K3) > 5 R(K3,K3) ≤ 6
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Theorem (Ramsey 1930)

R(Km,Kn) is finite.

R(G1, . . . ,Gk) is finite

Questions:

• study how R(G1, . . . ,Gk) grows if G1, . . . ,Gk grow (large)

• study R(G1, . . . ,Gk) for fixed G1, . . . ,Gk (small)

Radziszowski - Small Ramsey Numbers
Electronic Journal of Combinatorics - Survey
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[Erdős] Suppose aliens invade the
earth and threaten to obliterate it
in a year’s time unless human
beings can find the Ramsey
number for red five and blue five.
We could marshal the world’s best
minds and fastest computers, and
within a year we could probably
calculate the value. If the aliens
demanded the Ramsey number for
red six and blue six, however, we
would have no choice but to launch
a preemptive attack.

3/13/15, 8:40 AM

Page 1 of 1file:///Users/lidicky/Desktop/atlanta%20LS/fig-ufo-attack.svg
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New upper bounds (so far)

Problem Lower New upper Old upper

R(K−4 ,K
−
4 ,K

−
4 ) 28 28 30

R(K3,K
−
4 ,K

−
4 ) 21 23 27

R(K4,K
−
4 ,K

−
4 ) 33 47 59

R(K4,K4,K
−
4 ) 55 104 113

R(C3,C5,C5) 17 18 21?
R(K4,K

−
7 ) 37 52 59

R(K2,2,2,K2,2,2) 30 32 60?
R(K−5 ,K

−
6 ) 31 38 39

R(K5,K
−
6 ) 43 62 67
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Thank you for your attention!
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