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Outline

• what is graph coloring?
• Grötzsch’s theorem: triangle-free planar graphs are

3-colorable
• extensions of GT preserving triangle-free
• extensions of GT allowing (few) triangles

Old theorems with new simple(r) proofs.
(some new theorems too)
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Inspiration - coloring a political map

Task: Color vertices of a graph such that adjacent vertices have
distinct colors.
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Applications of graph coloring
Cellphone towers

Scheduling, register allocation (code generating),
DNA sequencing, . . . , Sudoku

2 7 6 1

4 8

1 5 2

1 6 3 9

9 4 3 1

9 3 6

2 4

8 3 9 2

2

Sudoku: Extending a partial 9-coloring (precoloring).
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The Four Color Theorem

Conjectured (Guthrie 1852)
Every planar graph can be (properly) colored
using 4 colors.

Theorem (Appel, Haken 1977)
Every planar graph can be (properly) colored
using 4 colors.

• first mentioned by Möbius in 1840
• first (wrong) proof by Kempe 1879

disproved by Heawood 1890 (5-color theorem)

• long tradition of wrong proofs
• reproved by Robertson, Sanders, Seymour, Thomas 1997
• proved by discharging
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Graph coloring

• describing classes of graphs that are k -colorable
• describing efficiently k -colorable classes of graphs
• algorithms for coloring
• variants for applications
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Definitions

A graph is plane if it is drawn without crossing edges.

A graph is planar if it can be drawn without crossing edges.

triangle = 3-cycle; 3-face; 4-cycle; 4-face; 5-face
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Inspiration

Theorem (Grötzsch 1959)
Every planar triangle-free graph is 3-colorable.

Generalizations:
• addition of an edge or a vertex
• precoloring subgraphs
• allowing some triangles
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Adding a vertex or an edge

Theorem (Aksenov ’77; Jensen, Thomassen ’00)
If H can be obtained from a triangle-free planar graph by
adding an edge h, then H is 3-colorable.

Theorem ()
If H can be obtained from a triangle-free planar graph by
adding a vertex v of degree , then H is 3-colorable.

h

Both proofs similar.
Both theorems are tight.
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Adding a vertex or an edge

Theorem (Aksenov ’77; Jensen, Thomassen ’00)
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Theorem (Jensen, Thomassen ’00)
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Definition of 4-critical graph

Problem: How to efficiently describe graphs that are not
3-colorable?

A graph G is a 4-critical graph if G is not 3-colorable but every
H ⊂ G is 3-colorable.

Useful as a minimal counterexample.
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Main tool

Theorem (Kostochka and Yancey ’12+)
If G is a 4-critical graph, then

|E(G)| ≥ 5|V (G)| − 2
3

.

We write as 3|E(G)| ≥ 5|V (G)| − 2.

4-critical graphs must have “many” edges
G does not have to be planar

V (G) is the vertex set of G and E(G) is the edge set of G
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Planar triangle-free graph and a 4-vertex

H is 4-critical, minimal counterexample
G plane, triangle-free, G = H − v

h v
H

G

Case 1: G contains a 4-face (use minimality to 3-color H)

Case 2: G contains no 4-faces
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Planar triangle-free graph and a 4-vertex

H is 4-critical, minimal counterexample
G plane, triangle-free, G = H − v

h v
H

G

Case 1: G contains a 4-face (use minimality to 3-color H)

v2

v0

v3 = v1

Case 2: G contains no 4-faces
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Planar triangle-free graph and a 4-vertex

H is 4-critical, minimal counterexample
G plane, triangle-free, G = H − v

h v
H

G

Case 1: G contains a 4-face (use minimality to 3-color H)

v2

v0

v3 = v1x1

x2

Case 2: G contains no 4-faces
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Planar triangle-free graph and a 4-vertex

H is 4-critical, minimal counterexample
G plane, triangle-free, G = H − v

h v
H

G

Case 1: G contains a 4-face

(use minimality to 3-color H)

Case 2: G contains no 4-faces
|E(G)| = e, |V (G)| = v , |F (G)| = f
F (G) is the set of faces of G
• v − 2 + f = e by Euler’s formula

• 2e ≥ 5f since each face has length ≥ 5 (no triangles)
• 5v − 10 + 5f = 5e
• 5v − 10 + 2e ≥ 5e
• 5v − 10 ≥ 3e (our G)
• 3(e + 4) ≥ 5(v + 1)− 2 (H is 4-critical graph)
• 5v − 10 ≥ 3e ≥ 5v − 9, contradiction
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Precoloring

Theorem (Grötzsch ’59)
Every precoloring of a face of length at most 5 in any
triangle-free plane graph G can be extended to a (proper)
3-coloring of G.

Theorem (Aksenov, Borodin, Glebov ’02)
Every precoloring of two non-adjacent vertices in any
triangle-free planar graph G can be extended to a (proper)
3-coloring of G.
(Proof similar to the previous one.)

G G

G

Both theorems are tight.
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Tightness for precoloring a 6-face

Not every precoloring of a 6-face extends to a 3-coloring.
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Precoloring larger face

Description of “critical” graphs with precolored
• 6-face by Gimbel, Thomassen ’97;

Aksenov, Borodin, Glebov ’03

• 7-face by Aksenov, Borodin, Glebov ’04 (discharging);
Dvořák, L. ’14 (network flows)

• 8-face by Dvořák, L. ’14
• 9-face by Choi, Ekstein, Holub, L. ’15+

15



Precoloring larger face

Description of “critical” graphs with precolored
• 6-face by Gimbel, Thomassen ’97;

Aksenov, Borodin, Glebov ’03

• 7-face by Aksenov, Borodin, Glebov ’04 (discharging);
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New proof

Theorem (Grötzsch ’59, BKLY ’14)
Every precoloring of a face of length at most 5 in any
triangle-free plane graph G can be extended to a (proper)
3-coloring of G.

G G

Our proof is significantly easier.
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Proof
If G is a triangle-free planar graph and F is a precolored 4-face
or 5-face, then the precoloring of F extends.

Case 1: F is a 4-face

1 2

12

G

G v

H 1 2

12

G 3

H

1 2

13

G G H

1 2

13

G H

Case 2: F is a 5-face

2 3

21
3

G G v

H 2 3

21
3

G 1

H
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Allowing some triangles
Theorem (Grötzsch ’59)
Every planar triangle-free graph is 3-colorable.

One triangle is easy!

G

Removing one edge of the triangle results in triangle-free G.

Theorem (Grünbaum ’63; Aksenov ’74; Borodin ’97; BKLY ’14)

Every planar graph containing at most three triangles is
3-colorable.

G
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Theorem (Grünbaum ’63; Aksenov ’74; Borodin ’97; BKLY ’14)

Every planar graph containing at most three triangles is
3-colorable.
Proof
• G is 4-critical (minimal counterexample)
• Reductions:

• every 3-cycle is a face
• every 4-cycle is a face or has a triangle inside and outside
• every 5-cycle is a face or has a triangle inside and outside

Case 1: G has no 4-faces
Case 2: G has a 4-face with a triangle (no identification)
Case 3: G has a 4-face where identification is possible
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Three triangles - Proof sketch
Case 2: G has a 4-face F with a triangle (no identification)

v3 v2

v1v0

F

Both v0, v1, v2 and v0, v2, v3 are faces. G has 4 vertices!
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Three triangles - Proof sketch
Case 3: G has a 4-face where identification is possible

v3 v2

v1v0

x1

x2

y1

y2

Since G is plane, some of these vertices are the same.

Only two cases left . . .
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Case 3: G has a 4-face where identification is possible

v3 v2

v1v0

x1

x2

y1

y2

Since G is plane, some of these vertices are the same.
Only two cases left . . .

v0 v1

v2v3

z

x = y

v0 v1

v2v3

z

x y
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Problem (Erdős ’90)
Describe 4-critical planar graphs containing 4 triangles.

22



Havel ’69; Aksenov ’70s

; Aksenov, Melnikov ’78,’80; Borodin ’97
Thomas and Walls ’04

...

Problem (Sachs ’72)
Can the triangles be partitioned into two pairs so that in each
pair the distance between the triangles is less than two?
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Theorem (Borodin, Dvořák, Kostochka, L., Yancey ’14)

If G is 4-critical plane graph with 4 triangles and no 4-faces
then it is one of

...

...

...

24



Theorem (Borodin, Dvořák, Kostochka, L., Yancey ’14)

Every 4-critical plane graph with 4 triangles can be obtained
from a 4-critical plane graph G′ with 4 triangles and no 4-faces
by expanding some vertices of degree 3.

w

y

z

x

w

y

z w

y

z

→

Corollary
Triangles can be partitioned into two pairs so that in each pair
the distance between the triangles is less than at most two.
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Grötzsch’s theorem on surfaces
• triangle-free is not enough for 3-coloring on surfaces
• finitely (depends on genus) many 4-critical graphs if

triangle-free and 4-cycle-free
• no contractible triangles and 4-cycles is enough for

projective plane and torus

Theorem (Dvořák, L. ’14)
Every 4-critical graph without contractible triangles and
4-cycles embedded in a surface of genus g looks like

H

F
F

C

where |V (H)| = O(g), F are 4-cycles and C are from
Thomas-Walls. (By discharging, computer assisted.)
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Thank you for your attention!


