Triangles and 3-coloring of planar graphs

Bernard Lidický

Iowa State University

February 4, 2015

Outline

- what is graph coloring?
- Grötzsch's theorem: triangle-free planar graphs are 3-colorable
- extensions of GT preserving triangle-free
- extensions of GT allowing (few) triangles

Old theorems with new simple(r) proofs. (some new theorems too)

Task: Color vertices of a graph such that adjacent vertices have distinct colors.

Applications of graph coloring Cellphone towers

Cellphone towers

Cellphone towers

Cellphone towers

Cellphone towers

Cellphone towers

Scheduling, register allocation (code generating), DNA sequencing, ..., Sudoku

Sudoku: Extending a partial 9-coloring (precoloring).

Conjectured (Guthrie 1852)

Conjectured (Guthrie 1852)

Every planar graph can be (properly) colored using 4 colors.

Theorem (Appel, Haken 1977)

Conjectured (Guthrie 1852)

Every planar graph can be (properly) colored using 4 colors.

Theorem (Appel, Haken 1977)

Every planar graph can be (properly) colored using 4 colors.

• first mentioned by Möbius in 1840

Conjectured (Guthrie 1852)

Every planar graph can be (properly) colored using 4 colors.

Theorem (Appel, Haken 1977)

- first mentioned by Möbius in 1840
- first (wrong) proof by Kempe 1879

Conjectured (Guthrie 1852)

Every planar graph can be (properly) colored using 4 colors.

Theorem (Appel, Haken 1977)

- first mentioned by Möbius in 1840
- first (wrong) proof by Kempe 1879 disproved by Heawood 1890 (5-color theorem)

Conjectured (Guthrie 1852)

Every planar graph can be (properly) colored using 4 colors.

Theorem (Appel, Haken 1977)

- first mentioned by Möbius in 1840
- first (wrong) proof by Kempe 1879 disproved by Heawood 1890 (5-color theorem)
- long tradition of wrong proofs

Conjectured (Guthrie 1852)

Every planar graph can be (properly) colored using 4 colors.

Theorem (Appel, Haken 1977)

- first mentioned by Möbius in 1840
- first (wrong) proof by Kempe 1879 disproved by Heawood 1890 (5-color theorem)
- long tradition of wrong proofs
- reproved by Robertson, Sanders, Seymour, Thomas 1997

Conjectured (Guthrie 1852)

Every planar graph can be (properly) colored using 4 colors.

Theorem (Appel, Haken 1977)

- first mentioned by Möbius in 1840
- first (wrong) proof by Kempe 1879 disproved by Heawood 1890 (5-color theorem)
- long tradition of wrong proofs
- reproved by Robertson, Sanders, Seymour, Thomas 1997
- proved by discharging

Graph coloring

- describing classes of graphs that are k-colorable
- describing efficiently k-colorable classes of graphs
- algorithms for coloring
- variants for applications

A graph is *plane* if it is drawn without crossing edges.

A graph is *plane* if it is drawn without crossing edges.

A graph is *plane* if it is drawn without crossing edges. A graph is *planar* if it can be drawn without crossing edges.

A graph is *plane* if it is drawn without crossing edges. A graph is *planar* if it can be drawn without crossing edges.

triangle = 3-cycle; 3-face

A graph is *plane* if it is drawn without crossing edges. A graph is *planar* if it can be drawn without crossing edges.

triangle = 3-cycle; 3-face; 4-cycle; 4-face

A graph is *plane* if it is drawn without crossing edges. A graph is *planar* if it can be drawn without crossing edges.

triangle = 3-cycle; 3-face; 4-cycle; 4-face; 5-face

Inspiration

Theorem (Grötzsch 1959)

Every planar triangle-free graph is 3-colorable.

Inspiration

Theorem (Grötzsch 1959)

Every planar triangle-free graph is 3-colorable.

Generalizations:

- addition of an edge or a vertex
- precoloring subgraphs
- allowing some triangles

Theorem (Aksenov '77; Jensen, Thomassen '00) If H can be obtained from a triangle-free planar graph by adding an edge h, then H is 3-colorable.

Theorem (Aksenov '77; Jensen, Thomassen '00) If H can be obtained from a triangle-free planar graph by adding an edge h, then H is 3-colorable.

Theorem (Jensen, Thomassen '00)

If H can be obtained from a triangle-free planar graph by adding a vertex v of degree 3, then H is 3-colorable.

Theorem (Aksenov '77; Jensen, Thomassen '00) If H can be obtained from a triangle-free planar graph by adding an edge h, then H is 3-colorable.

Theorem (Borodin, Kostochka, L., Yancey '14) If H can be obtained from a triangle-free planar graph by adding a vertex v of degree 4, then H is 3-colorable.

Theorem (Aksenov '77; Jensen, Thomassen '00) If H can be obtained from a triangle-free planar graph by adding an edge h, then H is 3-colorable.

Theorem (Borodin, Kostochka, L., Yancey '14) If H can be obtained from a triangle-free planar graph by adding a vertex v of degree 4, then H is 3-colorable.

Both proofs similar.

Theorem (Aksenov '77; Jensen, Thomassen '00) If H can be obtained from a triangle-free planar graph by adding an edge h, then H is 3-colorable.

Theorem (Borodin, Kostochka, L., Yancey '14) If H can be obtained from a triangle-free planar graph by adding a vertex v of degree 4, then H is 3-colorable.

Both proofs similar. Both theorems are tight.
Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Problem: How to efficiently describe graphs that are not 3-colorable?

A graph *G* is a 4-*critical graph* if *G* is not 3-colorable but every $H \subset G$ is 3-colorable.

Main tool

Theorem (Kostochka and Yancey '12+) If *G* is a 4-critical graph, then

$$|E(G)| \geq \frac{5|V(G)|-2}{3}.$$

We write as $3|E(G)| \ge 5|V(G)| - 2$.

4-critical graphs must have "many" edges G does not have to be planar

V(G) is the vertex set of G and E(G) is the edge set of G

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

Case 1: *G* contains a 4-face Case 2: *G* contains no 4-faces |E(G)| = e, |V(G)| = v, |F(G)| = fF(G) is the set of faces of *G*

• v - 2 + f = e by Euler's formula

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since each face has length ≥ 5 (no triangles)

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since each face has length ≥ 5 (no triangles)
- 5v 10 + 5f = 5e

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since each face has length ≥ 5 (no triangles)
- 5v 10 + 5f = 5e
- 5v − 10 + 2e ≥ 5e

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since each face has length ≥ 5 (no triangles)
- 5v 10 + 5f = 5e
- $5v 10 + 2e \ge 5e$
- 5v − 10 ≥ 3e (our G)

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since each face has length ≥ 5 (no triangles)
- 5v 10 + 5f = 5e
- $5v 10 + 2e \ge 5e$
- 5v − 10 ≥ 3e (our G)
- $3(e+4) \ge 5(v+1) 2$ (*H* is 4-critical graph)

H is 4-critical, minimal counterexample *G* plane, triangle-free, G = H - v

- v 2 + f = e by Euler's formula
- $2e \ge 5f$ since each face has length ≥ 5 (no triangles)
- 5v 10 + 5f = 5e
- $5v 10 + 2e \ge 5e$
- 5v − 10 ≥ 3e (our G)
- $3(e+4) \ge 5(v+1) 2$ (*H* is 4-critical graph)
- $5v 10 \ge 3e \ge 5v 9$, contradiction

Theorem (Grötzsch '59)

Every precoloring of a face of length at most 5 in any triangle-free plane graph G can be extended to a (proper) 3-coloring of G.

Theorem (Grötzsch '59)

Every precoloring of a face of length at most 5 in any triangle-free plane graph G can be extended to a (proper) 3-coloring of G.

Theorem (Aksenov, Borodin, Glebov '02)

Every precoloring of two non-adjacent vertices in any triangle-free planar graph G can be extended to a (proper) 3-coloring of G.

Theorem (Grötzsch '59; BKLY '14)

Every precoloring of a face of length at most 5 in any triangle-free plane graph G can be extended to a (proper) 3-coloring of G.

Theorem (Aksenov, Borodin, Glebov '02; BKLY '14) Every precoloring of two non-adjacent vertices in any triangle-free planar graph *G* can be extended to a (proper) 3-coloring of *G*.

(Proof similar to the previous one.)

Theorem (Grötzsch '59; BKLY '14)

Every precoloring of a face of length at most 5 in any triangle-free plane graph G can be extended to a (proper) 3-coloring of G.

Theorem (Aksenov, Borodin, Glebov '02; BKLY '14) Every precoloring of two non-adjacent vertices in any triangle-free planar graph *G* can be extended to a (proper) 3-coloring of *G*.

(Proof similar to the previous one.)

Both theorems are tight.

Not every precoloring of a 6-face extends to a 3-coloring.
Description of "critical" graphs with precolored

 6-face by Gimbel, Thomassen '97; Aksenov, Borodin, Glebov '03

Description of "critical" graphs with precolored

 6-face by Gimbel, Thomassen '97; Aksenov, Borodin, Glebov '03

 7-face by Aksenov, Borodin, Glebov '04 (discharging); Dvořák, L. '14 (network flows)

Description of "critical" graphs with precolored

 6-face by Gimbel, Thomassen '97; Aksenov, Borodin, Glebov '03

- 7-face by Aksenov, Borodin, Glebov '04 (discharging); Dvořák, L. '14 (network flows)
- 8-face by Dvořák, L. '14

Description of "critical" graphs with precolored

 6-face by Gimbel, Thomassen '97; Aksenov, Borodin, Glebov '03

- 7-face by Aksenov, Borodin, Glebov '04 (discharging); Dvořák, L. '14 (network flows)
- 8-face by Dvořák, L. '14
- 9-face by Choi, Ekstein, Holub, L. '15+

New proof

Theorem (Grötzsch '59, BKLY '14)

Every precoloring of a face of length at most 5 in any triangle-free plane graph G can be extended to a (proper) 3-coloring of G.

Our proof is significantly easier.

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

If *G* is a triangle-free planar graph and *F* is a precolored 4-face or 5-face, then the precoloring of *F* extends.

Case 1: F is a 4-face H is 3-colorable

Allowing some triangles

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

Allowing some triangles

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

One triangle is easy!

Removing one edge of the triangle results in triangle-free G.

Allowing some triangles

Theorem (Grötzsch '59)

Every planar triangle-free graph is 3-colorable.

One triangle is easy!

Removing one edge of the triangle results in triangle-free G.

Theorem (Grünbaum '63; Aksenov '74; Borodin '97; BKLY '14) Every planar graph containing at most three triangles is 3-colorable.

Theorem (Grünbaum '63; Aksenov '74; Borodin '97; BKLY '14)

Every planar graph containing at most three triangles is 3-colorable.

Proof

- G is 4-critical (minimal counterexample)
- Reductions:
 - every 3-cycle is a face
 - every 4-cycle is a face or has a triangle inside and outside
 - every 5-cycle is a face or has a triangle inside and outside
- Case 1: G has no 4-faces
- Case 2: G has a 4-face with a triangle (no identification)
- Case 3: G has a 4-face where identification is possible

Three triangles - Proof sketch

Case 2: G has a 4-face F with a triangle (no identification)

Both v_0 , v_1 , v_2 and v_0 , v_2 , v_3 are faces. *G* has 4 vertices!

Three triangles - Proof sketch

Case 3: G has a 4-face where identification is possible

Since G is plane, some of these vertices are the same.

Three triangles - Proof sketch

Case 3: G has a 4-face where identification is possible

Since G is plane, some of these vertices are the same. Only two cases left ...

Problem (Erdős '90)

Describe 4-critical planar graphs containing 4 triangles.

Havel '69; Aksenov '70s

Havel '69; Aksenov '70s

Problem (Sachs '72)

Havel '69; Aksenov '70s; Aksenov, Melnikov '78,'80

Problem (Sachs '72)

Havel '69; Aksenov '70s; Aksenov, Melnikov '78,'80; Borodin '97

Problem (Sachs '72)

Havel '69; Aksenov '70s; Aksenov, Melnikov '78,'80; Borodin '97 Thomas and Walls '04

Problem (Sachs '72)

Havel '69; Aksenov '70s; Aksenov, Melnikov '78,'80; Borodin '97 Thomas and Walls '04

Problem (Sachs '72)

Theorem (Borodin, Dvořák, Kostochka, L., Yancey '14) If *G* is 4-critical plane graph with 4 triangles and no 4-faces then it is one of

...

Theorem (Borodin, Dvořák, Kostochka, L., Yancey '14) Every 4-critical plane graph with 4 triangles can be obtained from a 4-critical plane graph G' with 4 triangles and no 4-faces by expanding some vertices of degree 3.

Theorem (Borodin, Dvořák, Kostochka, L., Yancey '14) Every 4-critical plane graph with 4 triangles can be obtained from a 4-critical plane graph G' with 4 triangles and no 4-faces by expanding some vertices of degree 3.

Corollary

Triangles can be partitioned into two pairs so that in each pair the distance between the triangles is less than at most two.

Grötzsch's theorem on surfaces

- triangle-free is not enough for 3-coloring on surfaces
- finitely (depends on genus) many 4-critical graphs if triangle-free and 4-cycle-free
- no contractible triangles and 4-cycles is enough for projective plane and torus

Grötzsch's theorem on surfaces

- triangle-free is not enough for 3-coloring on surfaces
- finitely (depends on genus) many 4-critical graphs if triangle-free and 4-cycle-free
- no contractible triangles and 4-cycles is enough for projective plane and torus

Theorem (Dvořák, L. '14)

Every 4-critical graph without contractible triangles and 4-cycles embedded in a surface of genus g looks like

where |V(H)| = O(g), *F* are 4-cycles and *C* are from Thomas-Walls. (By discharging, computer assisted.)

Thank you for your attention!