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Theorem (Delcourt and Postle 2015+)

If 3|n then a random 4-regular graph on n vertices has a claw
decomposition asymptotically almost surely (a.a.s.).

center leaf
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Question (Barát and Thomassen)

Does every 4-edge-connected 4-regular graph have a claw
decomposition?

No!

8 center vertices, 4 leaf vertices → adjacent leaves
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Barát and Thomassen’s Conjecture

Conjecture (Barát and Thomassen 2006)

If G is a planar 4-edge-connected, 4-regular graph such that
3|e(G ), then G has a claw decomposition.

Counterexample Lai 2007
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Theorem (Delcourt and Postle 2015+)

If 3|n then a random 4-regular graph on n vertices has a claw
decomposition a.a.s..

Theorem (Bollobás 1981, Wormald 1981)

Random d-regular graph is d-edge-connected a.a.s..
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Theorem (Delcourt and Postle 2015+)

If 3|n then a random 4-regular graph on n vertices has a claw
decomposition a.a.s..

Theorem (Delcourt and Postle 2015+; proved)

If 3|n then a random 4-regular graph on n vertices has an
orientation in which every outdegree is either 3 or 0 a.a.s..
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Conjecture (Tutte 1966; equivalent form)

Every 4-edge connected 5-regular graph has an edge orientation in
which every outdegree is either 4 or 1.

Theorem (Pralat and Wormald 2015+)

A random 5-regular graph on n vertices has an edge orientation in
which every outdegree is either 4 or 1 a.a.s..

Conjecture (Jaeger 1988; equivalent form)

Every 4p-edge connected (4p + 1)-regular graph has an edge
orientation in which every outdegree is either 3p + 1 or p.

Theorem (Alon and Pralat 2011)

For p > p0, a random (4p + 1)-regular graph has an orientation in
which every outdegree is either 3p + 1 or p.
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Theorem (Delcourt and Postle 2015+)

If 3|n then a random 4-regular graph on n vertices has a claw
decomposition (orientation with outdegrees 3 or 0) a.a.s..

Question: What about d-regular graphs and Sk (star with k
leaves)?

Theorem (L. M. Lovász, Thomassen, Wang, and Zhu 2013)

Every d-edge-connected graph on e edges decomposes into copies
of Sk if e is divisible by k and k ≤ dd/2e.

Open for k > dd/2e.
Same as: outdegrees either k or 0

Try: random 4-regular gives orientation with outdegrees 3 or 0....
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Random d-regular Graphs and Pairings Pn,d

Pairing Model
(Bollobás 1980)

1. Begin with n vertices.

2. Create n “cells,” each with d
“points.” (dn even)

3. Form a random perfect
matching.

4. Collapse the cells.

5. If this (multi)graph is not
simple, then restart.

P(simple) ∼ exp
(

1−d2

4

)
for d fixed and n→∞

Event true a.a.s in Pn,d , ⇒ true a.a.s. in random d-regular graphs.
Janson: Event true a.a.s. in Pn,d , ⇒ true a.a.s. in random
d-regular multigraphs.
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Really happening:

Theorem (Delcourt and Postle 2015+)

If 3|n then a random multigraph from pairing in Pn,4 has an
orientation with outdegrees 3 or 0 a.a.s..

Y = Y (n) := # {3, 0}-orientations of a random element of Pn,4.
First try: compute E[Y ], E[Y 2], show

E[Y 2]

E[Y ]2
→ 0.
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Luke and Michelle
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Counting Orientations Using Signatures
Y = Y (n) := # {3, 0}-orientations of a random pairing of Pn,4.
When counting E[Y ] :
- for every pairing count # of orientations
- for every “orientation” count # of pairings

( n
2n/3

)
Centers Leaves (independent set)

Special points
Now we have a signature.
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Computing E[Y ] Using Signatures

Y = Y (n) := # {3, 0}-orientations of a random element of Pn,4.

E[Y ] =

( n
2n/3

)
· 42n/3 · (2n)!

M(4n)
∼ 3√

2

(
27

16

)n/3

.

•
( n

2n/3

)
ways to select “centers.”

and

• 42n/3 choices of special points

for centers.

•
( n

2n/3

)
· 42n/3 signatures.

•
(

4n
2

)
! = (2n)! ways to match

“out” points to “in” points.

• M(4n) is # pairings
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Computing E[Y 2]; E[Y ] ∼ 3√
2

(
27
16

)n/3

To calculate E[Y 2], we fix two signatures and see how many
configurations they jointly extend to.

E[Y 2] ∼
√

3

2
· 9

2

(
27

16

)2n/3

Hence
E[Y 2]

E[Y ]2
∼
√

3

2
> 0⇒ second moment fails
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Main Tool [Robinson and Wormald 1992]

Let λj > 0 and δj > −1 be real, j ≥ 1. Suppose for each n there are non-negative
random variables Xj = Xj (n), j ≥ 1, and Y = Y (n) defined on the same probability
space such that Xj is integer valued and E[Y ] > 0 (for n sufficiently large).
Furthermore, suppose

1. For each j ≥ 1, X1,X2, . . . ,Xj are asymptotically independent Poisson random
variables with

E[Xi ]→ λi , for all i ∈ [j];
2.

E
[
Y [X1]`1

. . . [Xj ]`j

]
E[Y ]

→
j∏

i=1

(λi (1 + δi ))`i

for any fixed `1, . . . , `j where [X ]` is the falling factorial;

3.
∑

i λiδ
2
i <∞;

4.
E[Y 2]

E[Y ]2
≤ exp

(∑
i

λiδ
2
i

)
+ o(1) as n→∞.

Then, a.a.s. Y > 0.

This works for 4-regular and orientations with outdegree ∈ {0, 3}.
Now we trying {0, k} in d-regular.
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1. For each j ≥ 1, X1,X2, . . . ,Xj are asymptotically independent
Poisson random variables with

E[Xi ]→ λi , for all i ∈ [j ];

Let Xi denote the number of cycles of length i in the random
multigraph resulting from a pairing in Pn,d .

Theorem (Bollobás 1980)

For j ≥ 1, X1, . . . ,Xj are asymptotically independent Poisson
random variables with

E[Xi ]→ λi :=
(d − 1)i

2 · i

for all i ∈ [j ].
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2.
E
[
Y [X1]`1 . . . [Xj ]`j

]
E[Y ]

→
j∏

i=1

(λi (1 + δi ))`i

for any fixed `1, . . . , `j where [X ]` is the falling factorial;

We show that for each j ≥ 1,

E [YXj ]

E[Y ]
→ λj (1 + δj)

E[YXj ] = E[Y ] · λj

(
1 +

(
d − 2k + 1

d − 1

)j
)

; δj =

(
d − 2k + 1

d − 1

)j
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3.
∑

i λiδ
2
i <∞;

λi =
(d − 1)i

2i
δi =

(
d − 2k + 1

d − 1

)i

∑
i

λiδ
2
i = −1

2
ln

(
4k − 2− d − (2k − d)2

d − 1

)
<∞

Hence k < d
2 + 0.5+

√
d+1

2 .
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4.
E[Y 2]

E[Y ]2
≤ exp

(∑
i

λiδ
2
i

)
+ o(1) as n→∞.

Guess E[Y 2] ∼ E[Y ]2 · exp
(∑

i λiδ
2
i

)
Guess
A random d-regular multigraph from Pn,d has an orientation with

outdegrees k or 0 a.a.s. if d
2 < k ≤ d

2 +
√
d

2 (and k |dn/2).

# leaf vertices is
√
d

d+
√
d
n. form independent set.

Theorem (Bollobas 1981)

For random d-regular graph α(G ) < 2 log d
d n a.a.s..

Guess cannot be true!
It MUST hold k ≤ d

2 + 2 log d .

18
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Dealing with E[Y 2]

19



Guess E[Y 2] ∼ E[Y ]2 · exp
(∑

i λiδ
2
i

)
works for some d , k .

Computing E[Y 2] is more tricky.

Theorem (Delcourt, L., Postle)

A random d-regular graph on n vertices has orientation with
outdegrees in {0, k} a.a.s. (if k |dn/2, k > d/2) for

• small d and k < d
2 + 2 log d − c (with machine d up to 50)

• larger d and k up to d
2 + Ω(log d)?
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Theorem (Delcourt, L., Postle)

A graph in Gn,d has orientation with outdegrees in {0, k} a.a.s. for
• small d and k < d

2 + 2 log d − c (with machine d up to 50)

• larger d and k up to d
2 + Ω(log d)?

What about orientations with outdegrees in {k1, k2}?

Gn,d ⊕Hn ≈ Gn,d+2 if d ≥ 1 (a.a.s. holds in both)
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Happy Birthday!
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Conjecture (Jaeger 1988; equivalent form)

Every 4p-edge connected (4p + 1)-regular graph has an edge
orientation in which every outdegree is either 3p + 1 or p.

Conjecture (Jaeger 1988; dual planar version)

Every planar graph of girth ≥ 4p has a homomorphism to C2p+1

For p = 1:

Theorem (Grötzsch 1959)

Every triangle-free planar graph is 3-colorable.

Theorem (Borodin, Kim, , West ’04)

Every planar graph of girth ≥ 20p−2
3 has a homomorphism to

C2p+1.
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