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Does every 4-edge-connected 4-regular graph have a claw
decomposition?

No!

8 center vertices, 4 leaf vertices — adjacent leaves
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CONJECTURE (BARAT AND THOMASSEN 2006)

If G is a planar 4-edge-connected, 4-regular graph such that
3|e(G), then G has a claw decomposition.

Counterexample Lai 2007



THEOREM (DELCOURT AND POSTLE 2015+ )

If 3|n then a random 4-regular graph on n vertices has a claw
decomposition a.a.s..

THEOREM (BOLLOBAS 1981, WORMALD 1981)
Random d-regular graph is d-edge-connected a.a.s..
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THEOREM (DELCOURT AND POSTLE 2015+)

If 3|n then a random 4-regular graph on n vertices has a claw
decomposition a.a.s..

THEOREM (DELCOURT AND POSTLE 20154; PROVED)

If 3|n then a random 4-regular graph on n vertices has an
orientation in which every outdegree is either 3 or 0 a.a.s..

<]



CONJECTURE (TUTTE 1966; EQUIVALENT FORM)

Every 4-edge connected 5-regular graph has an edge orientation in
which every outdegree is either 4 or 1.

THEOREM (PRALAT AND WORMALD 2015+)

A random 5-regular graph on n vertices has an edge orientation in
which every outdegree is either 4 or 1 a.a.s..



CONJECTURE (TUTTE 1966; EQUIVALENT FORM)

Every 4-edge connected 5-regular graph has an edge orientation in
which every outdegree is either 4 or 1.

THEOREM (PRALAT AND WORMALD 2015+)

A random 5-regular graph on n vertices has an edge orientation in
which every outdegree is either 4 or 1 a.a.s..

CONJECTURE (JAEGER 1988; EQUIVALENT FORM )

Every 4p-edge connected (4p + 1)-regular graph has an edge
orientation in which every outdegree is either 3p + 1 or p.

THEOREM (ALON AND PRALAT 2011)

For p > po, a random (4p + 1)-regular graph has an orientation in
which every outdegree is either 3p + 1 or p.
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THEOREM (DELCOURT AND POSTLE 2015+)

If 3|n then a random 4-regular graph on n vertices has a claw
decomposition (orientation with outdegrees 3 or 0) a.a.s..

Question: What about d-regular graphs and Sy (star with k
leaves)?

THEOREM (L. M. LovAsz, THOMASSEN, WANG, AND ZHU 2013)

Every d-edge-connected graph on e edges decomposes into copies
of Sk if e is divisible by k and k < [d/2].

Open for k > [d/2].
Same as: outdegrees either k or 0

Try: random 4-regular gives orientation with outdegrees 3 or O....
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RANDOM d-REGULAR GRAPHS AND PAIRINGS P, 4

PAIRING MODEL
(BoLLOBAs 1980)

1. Begin with n vertices.
2. Create n “cells,” each with d
“points.” (dn even)

3. Form a random perfect
matching.

4. Collapse the cells.

ot

. If this (multi)graph is not
simple, then restart.

P(simple) ~ exp <1%¥> for d fixed and n — oo

Event true a.a.sin Pj, 4, = true a.a.s. in random d-regular graphs.
Janson: Event true a.a.s. in P, 4, = true a.a.s. in random
d-regular multigraphs.



Really happening:

THEOREM (DELCOURT AND POSTLE 2015+ )

If 3|n then a random multigraph from pairing in Pp 4 has an
orientation with outdegrees 3 or 0 a.a.s..

Y = Y(n) := # {3, 0}-orientations of a random element of P, 4.
First try: compute E[Y], E[Y?], show
E[Y?]
E[Y]?
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COUNTING ORIENTATIONS USING SIGNATURES
Y = Y(n) := # {3, 0}-orientations of a random pairing of P, 4.
When counting E[Y] :

- for every pairing count # of orientations

- for every “orientation” count # of pairings
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COUNTING ORIENTATIONS USING SIGNATURES
Y = Y(n) := # {3, 0}-orientations of a random pairing of P, 4.
When counting E[Y] :

- for every pairing count # of orientations

- for every “orientation” count # of pairings

(2nn/3) Centers © Leaves ©(independent set)
Special points

Now we have a signature.



CoMPUTING E[Y] USING SIGNATURES

Y = Y(n) := # {3, 0}-orientations of a random element of P, 4.

E[Y]= M(4n)

0000
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Y = Y(n) := # {3, 0}-orientations of a random element of P, 4.
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To calculate E[Y?], we fix two signatures and see how many
configurations they jointly extend to.
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CoMPUTING E[Y?]; E[Y] ~ (%)"/3

To calculate E[Y?], we fix two signatures and see how many
configurations they jointly extend to.

s ~o
E[Y?] ~ \E g <ig>2n/3

IE[YZ] 3 )
E[Y]? ~ 5 > 0 = second moment fails

Hence




MAIN TooL [ROBINSON AND WORMALD 1992]

Let A; > 0 and §; > —1 be real, j > 1. Suppose for each n there are non-negative
random variables X; = Xj(n), j > 1, and Y = Y/(n) defined on the same probability
space such that X; is integer valued and E[Y] > 0 (for n sufficiently large).
Furthermore, suppose

For each j > 1, X1, X3, ..., X; are asymptotically independent Poisson random
variables with
E[X;] = X;, forall i € [j];

E[Y[Xle, - .. Xy j _
{ 1EZ[Y1 y) Z] N H()\’ (1+5l_))é,

i=1

for any fixed /1, ...,¢; where [X]; is the falling factorial;
3. 3 Aid? < oo;

2
E\tli < exp <Z,: /\,-6,2> 4 o(1) as n — oo.

Then, a.a.s. Y > 0.



MAIN TooL [ROBINSON AND WORMALD 1992]

Let A; > 0 and §; > —1 be real, j > 1. Suppose for each n there are non-negative
random variables X; = Xj(n), j > 1, and Y = Y/(n) defined on the same probability
space such that X; is integer valued and E[Y] > 0 (for n sufficiently large).
Furthermore, suppose

For each j > 1, X1, X3, ..., X; are asymptotically independent Poisson random
variables with
E[X;] = X;, forall i € [j];

E[Y[Xle, - .. Xy j _
{ 1EZ[Y1 y) Z] N H()\’ (1+5l_))é,

i=1

for any fixed /1, ...,¢; where [X]; is the falling factorial;
3. 3 Aid? < oo;

2
E\tli < exp <Z,: /\,-6,2> 4 o(1) as n — oo.

Then, a.a.s. Y > 0.
This works for 4-regular and orientations with outdegree € {0, 3}.
Now we trying {0, k} in d-regular.



1. For each j > 1, X1, Xa,..., X; are asymptotically independent
Poisson random variables with

E[Xi] = A, forall i € [j];




1. For each j > 1, X1, Xa,..., X; are asymptotically independent
Poisson random variables with

E[Xi] = A, forall i € [j];

Let X; denote the number of cycles of length i in the random
multigraph resulting from a pairing in P, 4.
THEOREM (BOLLOBAS 1980)
For j > 1, X1,...,X; are asymptotically independent Poisson
random variables with
d-1)
E[X,'] — )\,‘ = 7( 5 )
o

for all i € [j].



E[Y[Xis - X

for any fixed /1, ..

By L)y

i=1

., j where [X], is the falling factorial;




E [Y[ngﬁ Ply] [T @ +a))"

i=1

for any fixed ¢1,...,¢; where [X], is the falling factorial;

We show that for each j > 1,

E[YX]
E[Y]

— )‘j (1+5j)



(d -1y
2i

=

d—-1

S ni? = L <4k—2—d—(2k—d)2
<=

d | 05+/d+1
Hence k < st

d—-1

d2k+1)"

) <o



E[Y?]
E[Y]?

< exp (Z )\,-5,-2> + o(1) as n — oc.
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E:j;] < exp (Z )\,-6,-2> + o(1) as n — oc.

Guess E[Y?] ~ E[Y]? - exp (3°; Aid?)

GUESS
A random d-regular multigraph from P, d has an orientation with
outdegrees k or 0 a.a.s. if 9 < k<94 ¥ (and k|dn/2).

# leaf vertices is d:r(/En' Qform independent set.

THEOREM (BoLLOBAS 1981)

For random d-regular graph o(G) < 2164

4 naa.s.



E::]Z] < exp (Z )\,-6,-2) + o(1) as n — oc.

Guess E[Y?] ~ E[Y]? - exp (3°; Aid?)

GUESS
A random d-regular multigraph from P, d has an orientation with

outdegrees k or 0 a.a.s. if 9 < k<94 ¥ (and k|dn/2).

# leaf vertices is d:r(/En' Qform independent set.

THEOREM (BoLLOBAS 1981)
For random d-regular graph o(G) < 2'?1gdn a.a.s..

Guess cannot be true!
It MUST hold k < § + 2logd.



DEALING WITH E[Y?]
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Guess E[Y?] ~ E[Y]? - exp (3°; Aid?) works for some d, k.
Computing E[Y?] is more tricky.
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Guess E[Y?] ~ E[Y]? - exp (3°; Aid?) works for some d, k.
Computing E[Y?] is more tricky.

THEOREM (DELCOURT, L., POSTLE)
A random d-regular graph on n vertices has orientation with
outdegrees in {0, k} a.a.s. (if k|dn/2, k > d/2) for
e small d and k < ¢ +2logd — ¢ (with machine d up to 50)
e larger d and k up to % + Q(log d)?

20
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A graph in G, 4 has orientation with outdegrees in {0, k} a.a.s. for
e small d and k < & +2logd — c (with machine d up to 50)
o larger d and k up to § + Q(logd)?

What about orientations with outdegrees in {k1, k»}?

Gnd ®Hpn~Gpagyoifd>1 (a.a.s. holds in both)
{0,k} in Gn g gives {1,k + 1} in G, g0
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THEOREM (DELCOURT, L., POSTLE)

A graph in G, 4 has orientation with outdegrees in {0, k} a.a.s. for
e small d and k < & +2logd — c (with machine d up to 50)
o larger d and k up to § + Q(logd)?

What about orientations with outdegrees in {k1, k»}?

Gnd ®Hpn~Gpagyoifd>1 (a.a.s. holds in both)
{Oa k} in gn,d gives {./7 k +./} in gn,d+2j

21
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CONJECTURE (JAEGER 1988; EQUIVALENT FORM )

Every 4p-edge connected (4p + 1)-regular graph has an edge
orientation in which every outdegree is either 3p + 1 or p.

CONJECTURE (JAEGER 1988; DUAL PLANAR VERSION)
Every planar graph of girth > 4p has a homomorphism to Copy1
For p=1:

THEOREM (GROTZSCH 1959)

Every triangle-free planar graph is 3-colorable.

s
THEOREM (BORrRODIN, Kim, £ Ko0s HKA, WEST ’04)

Every planar graph of girth > 202_2 has a homomorphism to

Copi1.

929
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