Decomposing graphs into edges and triangles

Adam Blumenthal Daniel Král’ Bernard Lidický
Yanitsa Pehova Taísa Martins Oleg Pikhurko
Florian Pfender Jan Volec

Atlanta Lecture Series
March 30, 2019
Motivation: Designing experiments.
Theorem (Erdős, Goodman, Pósa (1966))

The edges of any graph G of order n can be decomposed into at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ cliques.
Some history

Theorem (Erdős, Goodman, Pósa (1966))

The edges of any graph G of order n can be decomposed into at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges and triangles.
Some history

Theorem (Erdős, Goodman, Pósa (1966))

The edges of any graph G of order n can be decomposed into at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges and triangles.

Quick check:
Theorem (Erdős, Goodman, Pósa (1966))

The edges of any graph G of order n can be decomposed into at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges and triangles.

Quick check:
- No triangles $\rightarrow K_{\frac{n}{2}, \frac{n}{2}}$ can be decomposed into $\frac{n^2}{4}$ edges;
Theorem (Erdős, Goodman, Pósa (1966))

The edges of any graph G of order n can be decomposed into at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges and triangles.

Quick check:

- No triangles $\rightarrow K_{\frac{n}{2}, \frac{n}{2}}$ can be decomposed into $\frac{n^2}{4}$ edges;
- "All triangles" $\rightarrow K_n$ can be decomposed into $\frac{1}{3} \binom{n}{2} \approx \frac{n^2}{6}$ triangles.
The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.
Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

\[3 \leq \frac{7^2}{2} \]
Theorem (Chung (1981); Győri, Kostochka (1980))

*The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

3 + 3 \leq \frac{7^2}{2}$
Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

\[
4 + 3 + 3 \leq \frac{7^2}{2}
\]
Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

$$2 + 4 + 3 + 3 \leq \frac{7^2}{2}$$
Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

Theorem (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{9}{16} n^2$.

Conjecture (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq n^2 + o(n^2)$.

Cost

$$\text{cost} = 2\#K_2 + 3\#K_3.$$
Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

- Assign cost c_r to a clique K_r.
- Minimize $\sum_r c_r \cdot \#K_r$.

Theorem (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{9}{16} n^2$.

Conjecture (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq n^2 + o(n^2)$.
Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

- Assign cost c_r to a clique K_r.
- Minimize $\sum_r c_r \cdot \#K_r$.

Theorem (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{9n^2}{16}$.
Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

- Assign cost c_r to a clique K_r.
- Minimize $\sum_r c_r \cdot \#K_r$.

Theorem (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{9n^2}{16}$.

Conjecture (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.
Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

• Assign cost c_r to a clique K_r.
• Minimize $\sum_r c_r \cdot \#K_r$.

Theorem (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{9n^2}{16}$.

Conjecture (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.

Cost = $2\#K_2 + 3\#K_3$
Main result 1

Theorem (Král, L., Martins, Pehova 2019)

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.

Proof outline

1. Obtain a fractional decomposition into edges and triangles. (flag algebras method)
2. Fractional to full decomposition. (regularity method)
Main result 1

Theorem (Král, L., Martins, Pehova 2019)

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.

Proof outline

1. Obtain a fractional decomposition into edges and triangles. (flag algebras method)
2. Fractional to full decomposition. (regularity method)

Cost $= 2\#K_2 + 3\#K_3$
Main result 1

Theorem (Král, L., Martins, Pehova 2019)

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.

$\text{cost} = 2\#K_2 + 3\#K_3$
Main result 1

Theorem (Král, L., Martins, Pehova 2019)

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.

cost = 2\#K_2 + 3\#K_3
Main result 1

Theorem (Král, L., Martins, Pehova 2019)

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.

Proof outline

1. Obtain a fractional decomposition into edges and triangles.
 (flag algebras method)
Main result 1

Theorem (Král, L., Martins, Pehova 2019)

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \leq \frac{n^2}{2} + o(n^2)$.

Proof outline

1. Obtain a fractional decomposition into edges and triangles. (flag algebras method)
2. Fractional to full decomposition. (regularity method)

$\text{cost} = 2\#K_2 + 3\#K_3$
Fractional decomposition

Definition

A *decomposition* of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow \{ 0, 1 \}$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1.$$

K_4 doesn't have a triangle decomposition but it has a fractional triangle decomposition.

$\text{cost} = 2\#K_2 + 3\#K_3$
Fractional decomposition

Definition
A *decomposition* of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow \{0, 1\}$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1.$$
Fractional decomposition

Definition

A *decomposition* of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow \{0, 1\}$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1.$$

$3 + 2 + 2 + 2 = 9$

$cost = 2\#K_2 + 3\#K_3$
Fractional decomposition

Definition
A *fractional decomposition* of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow [0, 1]$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1.$$

$3 + 2 + 2 + 2 = 9$

$\frac{1}{2} (3 + 3)$

Cost $= 2\#K_2 + 3\#K_3$
Fractional decomposition

Definition
A fractional decomposition of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \to [0, 1]$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1.$$
Fractional decomposition

Definition
A *fractional decomposition* of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \to [0, 1]$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1.$$

$\begin{align*}
3 + 2 + 2 + 2 &= 9 \\
\frac{1}{2} (3 + 3 + 3 + 3) &= 6
\end{align*}$

K_4 doesn’t have a triangle decomposition but it has a fractional triangle decomposition.
Finding a fractional decomposition

Definition

For a graph G, let

$$\pi_3(G) = \min \text{ cost of a triangle-edge decomposition of } G$$

Our Theorem first step: $\pi_3(G), f(G) \leq \frac{1}{2}n^2 + o(n^2)$
Finding a fractional decomposition

Definition
For a graph \(G \), let

\[
\pi_3(G) = \min \text{ cost of a triangle-edge decomposition of } G
\]

and

\[
\pi_{3,f}(G) = \min \text{ cost of a fractional triangle-edge decomposition of } G.
\]
Finding a fractional decomposition

Definition
For a graph G, let

$$
\pi_3(G) = \text{min cost of a triangle-edge decomposition of } G
$$

and

$$
\pi_{3,f}(G) = \text{min cost of a fractional triangle-edge decomposition of } G.
$$

Clearly, $\pi_{3,f}(G) \leq \pi_3(G)$.
Finding a fractional decomposition

Definition

For a graph G, let

$$\pi_3(G) = \text{min cost of a triangle-edge decomposition of } G$$

and

$$\pi_{3,f}(G) = \text{min cost of a fractional triangle-edge decomposition of } G.$$

Clearly, $\pi_{3,f}(G) \leq \pi_3(G)$.

$\pi_3(K_4) = 9$, $\pi_{3,f}(K_4) = 6$
Finding a fractional decomposition

Definition
For a graph G, let

$$\pi_3(G) = \text{min cost of a triangle-edge decomposition of } G$$

and

$$\pi_{3,f}(G) = \text{min cost of a fractional triangle-edge decomposition of } G.$$

Clearly, $\pi_{3,f}(G) \leq \pi_3(G)$.

$\pi_3(K_4) = 9$
$\pi_{3,f}(K_4) = 6$

Our Theorem first step: $\pi_{3,f}(G) \leq \frac{n^2}{2} + o(n^2)$
Finding a fractional decomposition

Key lemma (using flag algebras)

Let G be a (large) graph and W be a uniformly chosen random subset of 7 vertices of G. Then

$$E[\pi_3, f(G[W])] \leq 21 + o(1).$$
Finding a fractional decomposition

Key lemma (using flag algebras)

Let G be a (large) graph and W be a uniformly chosen random subset of 7 vertices of G. Then

$$E[\pi_3,f(G[W])] \leq 21 + o(1).$$

Fractional decomposition of G:

- sum optimal decompositions for all $W \in \binom{V}{7}$
- divide by $\binom{n-2}{5}$

Each edge is in $\binom{n-2}{5}$ Ws so it is a fractional decomposition of G.
Finding a fractional decomposition

Key lemma (using flag algebras)

Let G be a (large) graph and W be a uniformly chosen random subset of 7 vertices of G. Then

$$E[\pi_{3,f}(G[W])] \leq 21 + o(1).$$

Fractional decomposition of G:

• sum optimal decompositions for all $W \in \binom{V}{7}$
• divide by $\binom{n-2}{5}$

Each edge is in $\binom{n-2}{5}$ Ws so it is a fractional decomposition of G.

$$\pi_{3,f}(G) \leq \frac{1}{\binom{n-2}{5}} \sum_{W} \pi_{3,f}(G[W])$$

$$\leq \frac{1}{\binom{n-2}{5}} \binom{n}{7} (21 + o(1)) = \frac{n^2}{2} + o(n^2).$$
Main result 1

Theorem (Král, L., Martins, Pehova 2019)

For any sufficiently large graph G, $\pi_3(G) \leq \frac{n^2}{2} + o(n^2)$.

Proof

✓ Obtain a fractional decomposition into edges and triangles $\pi_{3,f}(G) \leq \frac{n^2}{2} + o(n^2)$ (flag algebra methods).

\[\text{cost} = 2\#K_2 + 3\#K_3 \]
Main result 1

Theorem (Král, L., Martins, Pehova 2019)
For any sufficiently large graph G, $\pi_3(G) \leq \frac{n^2}{2} + o(n^2)$.

Proof

✓ Obtain a fractional decomposition into edges and triangles $\pi_{3,f}(G) \leq \frac{n^2}{2} + o(n^2)$ (flag algebra methods).

• Fractional to full decomposition (regularity method).
Fractional to full decomposition

Definition

H fixed small graph, G large graph.
Fractional to full decomposition

Definition

\(H \) fixed small graph, \(G \) large graph.

\[\nu_H(G) = \text{max size of } H\text{-packing of } G, \]

\[\nu_{fH}(G) = \text{max size of a fractional } H\text{-packing of } G, \]

\[\nu_{K_3}(K_4) = 1 \]
Fractional to full decomposition

Definition

H fixed small graph, G large graph.

$v_H(G) = \text{max size of } H\text{-packing of } G,$

$v^f_H(G) = \text{max size of a fractional } H\text{-packing of } G.$

$v_{K_3}(K_4) = 1$ \hspace{1cm} $v^f_{K_3}(K_4) = 2$
Fractional to Full Decomposition

Definition

H fixed small graph, G large graph.

$\nu_H(G) = \text{max size of } H\text{-packing of } G$,

$\nu^f_H(G) = \text{max size of a fractional } H\text{-packing of } G$.

$\nu_H(G) \leq \nu^f_H(G)$.

$\nu_{K_3}(K_4) = 1$ $\nu^f_{K_3}(K_4) = 2$
Definition

H fixed small graph, G large graph.

\[\nu_H(G) = \text{max size of } H\text{-packing of } G, \]

\[\nu^f_H(G) = \text{max size of a fractional } H\text{-packing of } G. \]

\[\nu_H(G) \leq \nu^f_H(G). \]

\[\nu_{K_3}(K_4) = 1 \]

\[\nu^f_{K_3}(K_4) = 2 \]

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

\[\nu^f_H(G) \leq \nu_H(G) + o(n^2). \]
Fractional to full decomposition

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

$$\nu^f_H(G) \leq \nu_H(G) + o(n^2).$$
Fractional to full decomposition

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

$$\nu^f_H(G) \leq \nu_H(G) + o(n^2).$$

Notice $\pi_3(G) = 2e(G) - 3\nu_{K_3}(G)$
Fractional to full decomposition

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

$$\nu^f_H(G) \leq \nu_H(G) + o(n^2).$$

Notice $\pi_3(G) = 2e(G) - 3\nu_{K_3}(G) \leq 2e(G) - 3\nu^f_{K_3}(G) + o(n^2)$

$\text{cost} = 2\#K_2 + 3\#K_3$
Fractional to Full Decomposition

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

$$\nu_H^f(G) \leq \nu_H(G) + o(n^2).$$

Notice $\pi_3(G) = 2e(G) - 3\nu_{K_3}(G) \leq 2e(G) - 3\nu_{K_3}^f(G) + o(n^2)$

Corollary

$$\pi_3(G) \leq \pi_{3,f}(G) + o(n^2) \leq \frac{n^2}{2} + o(n^2)$$

$cost = 2\#K_2 + 3\#K_3$
Fractional to Full Decomposition

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

$$\nu^f_H(G) \leq \nu_H(G) + o(n^2).$$

Notice $\pi_3(G) = 2e(G) - 3\nu_{K_3}(G) \leq 2e(G) - 3\nu^f_{K_3}(G) + o(n^2)$

Corollary

$$\pi_3(G) \leq \pi_{3,f}(G) + o(n^2) \leq \frac{n^2}{2} + o(n^2)$$

Theorem (Yuster 2004)

For a fixed family \mathcal{F} of graphs and an n vertex graph G we have

$$\nu^f_{\mathcal{F}}(G) \leq \nu_{\mathcal{F}}(G) + o(n^2).$$

\[\text{cost} = 2\#K_2 + 3\#K_3\]
Recap

Theorem (Král, L., Martins, Pehova 2019)

For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$
Recap

Theorem (Král, L., Martins, Pehova 2019)

For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$

What is needed for $o(n^2)$?
Theorem (Král, L., Martins, Pehova 2019)

For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$

What is needed for $o(n^2)$?

Examples:

$$\pi_3\left(K_{\frac{n}{2}, \frac{n}{2}} \right) = \frac{n^2}{2}$$

$$\pi_3\left(K_{\frac{n-1}{2}, \frac{n+1}{2}} \right) = \frac{n^2-1}{2}$$

cost $= 2\#K_2 + 3\#K_3$
Recap

Theorem (Král, L., Martins, Pehova 2019)

For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$

What is needed for $o(n^2)$?

Examples:

$$\pi_3\left(K\frac{n}{2}, \frac{n}{2}\right) = \frac{n^2}{2}$$

$$\pi_3\left(K\frac{n-1}{2}, \frac{n+1}{2}\right) = \frac{n^2-1}{2}$$

$$\pi_3(K_n) = ?$$
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

$e = 15, d = 5$
$n = 6 \equiv 0$

$e = 21, d = 6$
$n = 7 \equiv 1$

$e = 28, d = 7$
$n = 8 \equiv 2$

$e = 36, d = 8$
$n = 9 \equiv 3$

$e = 45, d = 9$
$n = 10 \equiv 4$

$e = 55, d = 10$
$n = 11 \equiv 5$
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

$e = 15, d = 5$
$n = 6 \equiv 0$

$e = 21, d = 6$
$n = 7 \equiv 1$

$e = 28, d = 7$
$n = 8 \equiv 2$

$e = 36, d = 8$
$n = 9 \equiv 3$

$e = 45, d = 9$
$n = 10 \equiv 4$

$e = 55, d = 10$
$n = 11 \equiv 5$
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\[e = 15, \ d = 5 \]
\[n = 6 \equiv 0 \]

\[e = 21, \ d = 6 \]
\[n = 7 \equiv 1 \]

\[e = 28, \ d = 7 \]
\[n = 8 \equiv 2 \]

\[e = 36, \ d = 8 \]
\[n = 9 \equiv 3 \]

\[e = 45, \ d = 9 \]
\[n = 10 \equiv 4 \]

\[e = 51, \ d = 8, 10 \]
\[n = 11 \equiv 5 \]
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\begin{align*}
e &= 15, \quad d = 5 \\
n &= 6 \equiv 0
\end{align*}

\begin{align*}
e &= 21, \quad d = 6 \\
n &= 7 \equiv 1
\end{align*}

\begin{align*}
e &= 28, \quad d = 7 \\
n &= 8 \equiv 2
\end{align*}

\begin{align*}
e &= 36, \quad d = 8 \\
n &= 9 \equiv 3
\end{align*}

\begin{align*}
e &= 45, \quad d = 9 \\
n &= 10 \equiv 4
\end{align*}

\begin{align*}
e &= 51, \quad d = 8, 10 \\
n &= 11 \equiv 5
\end{align*}
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\[e = 12, \quad d = 4 \]
\[n = 6 \equiv 0 \]

\[e = 21, \quad d = 6 \]
\[n = 7 \equiv 1 \]

\[e = 24, \quad d = 6 \]
\[n = 8 \equiv 2 \]

\[e = 36, \quad d = 8 \]
\[n = 9 \equiv 3 \]

\[e = 40, \quad d = 8 \]
\[n = 10 \equiv 4 \]

\[e = 51, \quad d = 8, 10 \]
\[n = 11 \equiv 5 \]
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

$e = 12, d = 4$ \hspace{1cm} $e = 21, d = 6$ \hspace{1cm} $e = 24, d = 6$

$n = 6 \equiv 0$ \hspace{1cm} $n = 7 \equiv 1$ \hspace{1cm} $n = 8 \equiv 2$

$e = 36, d = 8$ \hspace{1cm} $e = 40, d = 8$ \hspace{1cm} $e = 51, d = 8, 10$

$n = 9 \equiv 3$ \hspace{1cm} $n = 10 \equiv 4$ \hspace{1cm} $n = 11 \equiv 5$
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\[
e = \begin{cases}
12, & d = 4 \\
21, & d = 6 \\
24, & d = 6 \\
36, & d = 8 \\
39, & d = 6, 8 \\
51, & d = 8, 10
\end{cases}
\]

\[
n = \begin{cases}
6 \equiv 0 \\
7 \equiv 1 \\
8 \equiv 2 \\
9 \equiv 3 \\
10 \equiv 4 \\
11 \equiv 5
\end{cases}
\]
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\[
\begin{align*}
&\text{Conditions: } e = 12, d = 4, \quad n = 6 \equiv 0 \\
&\text{Conditions: } e = 21, d = 6, \quad n = 7 \equiv 1 \\
&\text{Conditions: } e = 24, d = 6, \quad n = 8 \equiv 2 \\
&\text{Conditions: } e = 36, d = 8, \quad n = 9 \equiv 3 \\
&\text{Conditions: } e = 39, d = 6, 8, \quad n = 10 \equiv 4 \\
&\text{Conditions: } e = 51, d = 8, 10, \quad n = 11 \equiv 5
\end{align*}
\]
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\[e = 12, \ d = 4 \]
\[n = 6 \equiv 0 \]
\[e = 21, \ d = 6 \]
\[n = 7 \equiv 1 \]
\[e = 24, \ d = 6 \]
\[n = 8 \equiv 2 \]
\[e = 36, \ d = 8 \]
\[n = 9 \equiv 3 \]
\[e = 39, \ d = 6, 8 \]
\[n = 10 \equiv 4 \]
\[e = 51, \ d = 8, 10 \]
\[n = 11 \equiv 5 \]
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\[e = 12, d = 4 \]
\[n = 6 \equiv 0 \]
\[\frac{n^2}{2} \]
\[n \text{ even} \]

\[e = 21, d = 6 \]
\[n = 7 \equiv 1 \]
\[\binom{n}{2} \]
\[n \text{ odd} \]

\[e = 24, d = 6 \]
\[n = 8 \equiv 2 \]
\[\frac{n^2}{2} + 1 \]

\[e = 36, d = 8 \]
\[n = 9 \equiv 3 \]
\[\binom{n}{2} + 4 \]

\[e = 39, d = 6, 8 \]
\[n = 10 \equiv 4 \]

\[e = 51, d = 8, 10 \]
\[n = 11 \equiv 5 \]
Decomposing K_n

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

\[e = \frac{n^2}{2}, \quad d = 4 \]
\[n = 6 \equiv 0 \]
\[e = 12, \quad d = 4 \]
\[n = 6 \equiv 0 \]

\[e = 21, \quad d = 6 \]
\[n = 7 \equiv 1 \]

\[e = 24, \quad d = 6 \]
\[n = 8 \equiv 2 \]

\[e = \frac{n^2}{2} + 1 \]
\[n = 9 \equiv 3 \]
\[e = 36, \quad d = 8 \]

\[e = 39, \quad d = 6, 8 \]
\[n = 10 \equiv 4 \]
\[n = 10 \equiv 4 \]
\[n = 11 \equiv 5 \]

\[e = 51, \quad d = 8, 10 \]
Theorem (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For sufficiently large \(n \),

\[
\pi_3(G) \leq \begin{cases}
\frac{n^2}{2} & \text{if } n \equiv 0, 2 \pmod{6} \quad \ldots \quad K_{\frac{n}{2}, \frac{n}{2}} \text{ and } K_n, \\
\frac{n^2-1}{2} & \text{if } n \equiv 1, 3, 5 \pmod{6} \quad \ldots \quad K_{\frac{n-1}{2}, \frac{n+1}{2}}, \\
\frac{n^2}{2} + 1 & \text{if } n \equiv 4 \pmod{6} \quad \ldots \quad K_n.
\end{cases}
\]

Note \(\pi_3(K_5) = 14 > \frac{n^2}{2} + 1. \)

The theorem cannot be extended to all \(n \) without adding exception(s).
If $\pi_3, f(G) \leq (\frac{1}{2} - \varepsilon) n^2$ then $\pi_3(G) < \frac{1}{2} n^2$ by Yuster/Haxell, Rödl.

If $\pi_3, f(G) \geq (\frac{1}{2} - \varepsilon) n^2$, by flag algebra methods the following graphs

$$\mathcal{F} = \left\{ \begin{array}{c}
\begin{array}{c}
\emptyset \\
\end{array}
, \begin{array}{c}
\{0,0,0\}
\end{array}
, \begin{array}{c}
\{0,0,0\}
\end{array}
\end{array} \right\}$$

have density at most δ, where $\delta \to 0$ as $\varepsilon \to 0$. By Induced removal lemma, G is \mathcal{F}-free up to $\delta' n^2$ edges.

Hence G is $\begin{array}{c}
\begin{array}{c}
\emptyset \\
\end{array}
\end{array}$ or $\begin{array}{c}
\begin{array}{c}
\{0,0,0\}
\end{array}
\end{array}$ up to $\delta' n^2$ edges.
Exact Result $K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$

G is close to $K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$, show $\pi_3(G) \leq \pi_3(K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil})$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
Exact Result $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$

G is close to $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, show $\pi_3(G) \leq \pi_3(K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil})$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
- extra edges, missing edges
Exact result $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$

G is close to $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$, show $\pi_3(G) \leq \pi_3(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil})$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
- extra edges, missing edges
- high extra degree vertices U

Theorem (Gy˝ori 1988)

If G is a graph with n vertices and $\frac{n^2}{4} + k$ edges, where $n \to \infty$ and $k = o(\frac{n^2}{4})$, then it has at least $k - O(k^2/n^2)$ edge-disjoint triangles.
Exact result $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$

G is close to $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, show $\pi_3(G) \leq \pi_3(K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil})$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
- extra edges, missing edges
- high extra degree vertices U
Exact result $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$

G is close to $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, show $\pi_3(G) \leq \pi_3(K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil})$.

- take maxcut ($|E(G)| \geq n^2/4$)
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
Exact result $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$

G is close to $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, show $\pi_3(G) \leq \pi_3(K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil})$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
Exact result $K_{\left\lfloor n/2 \right\rfloor, \left\lceil n/2 \right\rceil}$

G is close to $K_{\left\lfloor n/2 \right\rfloor, \left\lceil n/2 \right\rceil}$, show $\pi_3(G) \leq \pi_3(K_{\left\lfloor n/2 \right\rfloor, \left\lceil n/2 \right\rceil})$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
- other triangles with extra edges
Exact result $K_{\left\lfloor \frac{n}{2} \right\rfloor,\left\lceil \frac{n}{2} \right\rceil}$

G is close to $K_{\left\lfloor \frac{n}{2} \right\rfloor,\left\lceil \frac{n}{2} \right\rceil}$, show $\pi_3(G) \leq \pi_3(K_{\left\lfloor \frac{n}{2} \right\rfloor,\left\lceil \frac{n}{2} \right\rceil})$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
- other triangles with extra edges
- rest taken as K_2s
Exact Result $K\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil$

G is close to $K\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil$, show $\pi_3(G) \leq \pi_3(K\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil)$.

- take maxcut ($|E(G)| \geq \frac{n^2}{4}$)
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
- other triangles with extra edges
- rest taken as K_2s

Theorem (Győri 1988)

If G is a graph with n vertices and $\frac{n^2}{4} + k$ edges, where $n \to \infty$ and $k = o(n^2)$, then it has at least $k - O(k^2/n^2)$ edge-disjoint triangles.
Theorem (Barber, Kuhn, Lo, Osthus; Dross; Gustavsson)

Every large graph G on n vertices, where $|E(G)|$ is a multiple of 3 and all vertices have even degree at least $(9/10 + o(1))n$ has a triangle decomposition.
Exact result K_n

Theorem (Barber, Kuhn, Lo, Osthus; Dross; Gustavsson)

Every large graph G on n vertices, where $|E(G)|$ is a multiple of 3 and all vertices have even degree at least $(9/10 + o(1))n$ has a triangle decomposition.

K_n proof overview

- special treatment for low degree vertices
- make all degrees even and $|E(G)|$ divisible by 3
- apply Theorem

Desired conclusion:
If G is close to K_n then $\pi_3(G) \leq \pi_3(K_n)$.
Exact result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
Exact result \(K_n \)

\(G \) is close to \(K_n \) and maximize try to show \(\pi_3(G) \leq \pi_3(K_n) \).

- \(\delta(G) \geq n/8 \)
- degree < 0.99n go to \(U \), rest in \(W \)
Exact Result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
Exact result \(K_n \)

\(G \) is close to \(K_n \) and maximize try to show \(\pi_3(G) \leq \pi_3(K_n) \).

- \(\delta(G) \geq n/8 \)
- degree < 0.99\(n \) go to \(U \), rest in \(W \)
- \(S \subseteq W \) with odd degree in \(G \)
- make degrees in \(S \) even
Exact Result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
Exact result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
- for u in U cover $N_u[W]$ by triangles
Exact result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
- for u in U cover $N_u[W]$ by triangles
Exact result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2s.
Exact result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2s.
- make rest triangle divisible
Exact result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2s.
- make rest triangle divisible
Exact Result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2s.
- make rest triangle divisible
Exact result K_n

G is close to K_n and maximize try to show $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \geq n/8$
- degree $< 0.99n$ go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in S even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2s.
- make rest triangle divisible

- G is K_n or
- G is K_n without a matching of size 2 (mod 3) and $n \equiv 1, 3 \pmod{6}$.
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

\[e = 105, \, d = 14 \quad n = 15 \equiv 3 \]
\[e = 104, \, d = 13, 14 \quad n = 15 \equiv 3 \]
\[e = 103, \, d = 13, 14 \quad n = 15 \equiv 3 \]

$\pi_3(K_n) =$
$\pi_3(K_n^-) =$
$\pi_3(K_n^-) =$

\[\text{cost} = 2\#K_2 + 3\#K_3 \]
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

\[
e = 105, \quad d = 14 \quad n = 15 \equiv 3
\]

\[
e = 104, \quad d = 13, 14 \quad n = 15 \equiv 3
\]

\[
e = 103, \quad d = 13, 14 \quad n = 15 \equiv 3
\]

\[
\pi_3(K_n) = \binom{n}{2}
\]

\[
\pi_3(K_n^-) =
\]

\[
\pi_3(K_n^\sim) =
\]

\[
\text{cost} = 2\#K_2 + 3\#K_3
\]
K_n WITHOUT A MATCHING

\[n \equiv 1, 3 \pmod{6} \text{ means } K_n \text{ is triangle divisible} \]

\[e = 105, d = 14 \quad n = 15 \equiv 3 \]

\[e = 102, d = 12, 14 \quad n = 15 \equiv 3 \]

\[e = 103, d = 13, 14 \quad n = 15 \equiv 3 \]

\[\pi_3(K_n) = \binom{n}{2} \]

\[\pi_3(K_n^-) = \]

\[\pi_3(K_n^-) = \]

\[\text{cost} = 2\#K_2 + 3\#K_3 \]
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

$\pi_3(K_n) = \binom{n}{2}$

$\pi_3(K_n^-) = \pi_3(K_n^-) = \pi_3(K_n^-) =$

$\text{cost} = 2\#K_2 + 3\#K_3$
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

\[
e = 105, \ d = 14 \quad n = 15 \equiv 3
\]

\[
e = 102, \ d = 12, 14 \quad n = 15 \equiv 3
\]

\[
e = 103, \ d = 13, 14 \quad n = 15 \equiv 3
\]

$\pi_3(K_n) = \binom{n}{2}$

$\pi_3(K_n^-) = \binom{n}{2} + 1$

$\pi_3(K_n^-) =$

\[\text{cost} = 2\#K_2 + 3\#K_3\]
\(K_n \) WITHOUT A MATCHING

\(n \equiv 1, 3 \pmod{6} \) means \(K_n \) is triangle divisible

\[
e = 105, \ d = 14 \\
n = 15 \equiv 3
\]

\[
e = 102, \ d = 12, 14 \\
n = 15 \equiv 3
\]

\[
e = 101, \ d = 12, 14 \\
n = 15 \equiv 3
\]

\[
\pi_3(K_n) = \binom{n}{2} \\
\pi_3(K_n^-) = \binom{n}{2} + 1 \\
\pi_3(K_n^+) = \\
\]

\[
\text{cost} = 2\#K_2 + 3\#K_3
\]
\(K_n \) WITHOUT A MATCHING

\(n \equiv 1, 3 \pmod{6} \) means \(K_n \) is triangle divisible

\[
\binom{n}{2}, \quad \binom{n}{2} + 1, \quad \binom{n}{2} + 2
\]

\(e = 105, d = 14 \)
\(n = 15 \equiv 3 \)

\(e = 102, d = 12, 14 \)
\(n = 15 \equiv 3 \)

\(e = 99, d = 12, 14 \)
\(n = 15 \equiv 3 \)

\[
\pi_3(K_n) = \binom{n}{2}, \quad \pi_3(K_n^-) = \binom{n}{2} + 1, \quad \pi_3(K_n^-) =
\]

\(\text{cost} = 2\#K_2 + 3\#K_3 \)
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

\[
\pi_3(K_n) = \binom{n}{2}
\]
\[
\pi_3(K_n^-) = \binom{n}{2} + 1
\]
\[
\pi_3(K_n^-) =
\]

\[
e = 105, d = 14
n = 15 \equiv 3
\]
\[
e = 102, d = 12, 14
n = 15 \equiv 3
\]
\[
e = 99, d = 12, 14
n = 15 \equiv 3
\]

\[
\text{cost} = 2\#K_2 + 3\#K_3
\]
\(K_n \) WITHOUT A MATCHING

\(n \equiv 1, 3 \pmod{6} \) means \(K_n \) is triangle divisible

\[e = 105, \ d = 14 \]
\[n = 15 \equiv 3 \]

\[\pi_3(K_n) = \binom{n}{2} \]

\[\pi_3(K_n^-) = \binom{n}{2} + 1 \]

\[\pi_3(K_n^-) = \binom{n}{2} + 2 \]

\[\text{cost} = 2\#K_2 + 3\#K_3 \]
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

\[
\begin{align*}
\binom{n}{2} & = 105, \quad d = 14, \\
\binom{n}{2} + 1 & = 102, \quad d = 12, 14, \\
\binom{n}{2} + 2 & = 99, \quad d = 12, 14
\end{align*}
\]

\[
\begin{align*}
\pi_3(K_n) & = \binom{n}{2}, \\
\pi_3(K_n^-) & = \binom{n}{2} + 1, \\
\pi_3(K_n^+) & = \binom{n}{2} + 2
\end{align*}
\]

\[\text{cost} = 2\#K_2 + 3\#K_3\]
K\(_n\) WITHOUT A MATCHING

\(n \equiv 1, 3 \mod 6\) means \(K\(_n\)\) is triangle divisible

\[
\begin{align*}
\binom{n}{2} & : e = 105, d = 14 \\
\binom{n}{2} + 1 & : e = 102, d = 12, 14 \\
\binom{n}{2} + 2 & : e = 99, d = 12, 14
\end{align*}
\]

\(n = 15 \equiv 3\)

\(\pi_3(K\(_n\)) = \binom{n}{2}\)

\(\pi_3(K\(_n^\sim\)) = \binom{n}{2} + 1\)

\(\pi_3(K\(_n^\sim\)) = \binom{n}{2} + 2\)

\[
\begin{align*}
e & = 102, d = 13, 14 \\
n & = 15 \equiv 3
\end{align*}
\]
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

\[
\binom{n}{2} \equiv 3 \pmod{3}
\]

\[e = 105, d = 14\]
\[n = 15 \equiv 3\]

\[\pi_3(K_n) = \binom{n}{2}\]
\[\pi_3(K^-_n) = \binom{n}{2} + 1\]
\[\pi_3(K^+_n) = \binom{n}{2} + 2\]

\[e = 102, d = 12, 14\]
\[n = 15 \equiv 3\]

\[e = 99, d = 12, 14\]
\[n = 15 \equiv 3\]

\[\text{cost} = 2#K_2 + 3#K_3\]
\(K_n \) WITHOUT A MATCHING

\(n \equiv 1, 3 \pmod{6} \) means \(K_n \) is triangle divisible

\[
\begin{align*}
\binom{n}{2} & = 105, \; d = 14 \\
n & = 15 \equiv 3 \\
\pi_3(K_n) & = \binom{n}{2} \\
\pi_3(K_n^-) & = \binom{n}{2} + 1 \\
\pi_3(K_n^-) & = \binom{n}{2} + 2
\end{align*}
\]

\[
\begin{align*}
\binom{n}{2} + 1 & = 102, \; d = 12, 14 \\
n & = 15 \equiv 3 \\
\pi_3(K_n -) & = \binom{n}{2} + 1 \\
\pi_3(K_n^-) & = \binom{n}{2} + 2 \\
\end{align*}
\]

\[
\begin{align*}
\binom{n}{2} + 2 & = 99, \; d = 12, 14 \\
n & = 15 \equiv 3 \\
\pi_3(K_n^-) & = \binom{n}{2} + 2
\end{align*}
\]

\[\text{cost} = 2\#K_2 + 3\#K_3\]

\[
\begin{align*}
e & = 99, \; d = 12, 14 \\
n & = 15 \equiv 3
\end{align*}
\]
K_n WITHOUT A MATCHING

$n \equiv 1, 3 \pmod{6}$ means K_n is triangle divisible

\[
\binom{n}{2} \quad \binom{n}{2} + 1 \quad \binom{n}{2} + 2
\]

\[
e = 105, d = 14 \\
n = 15 \equiv 3
\]

\[
e = 102, d = 12, 14 \\
n = 15 \equiv 3
\]

\[
e = 99, d = 12, 14 \\
n = 15 \equiv 3
\]

\[
\pi_3(K_n) = \binom{n}{2} \\
\pi_3(K_n^-) = \binom{n}{2} + 1 \\
\pi_3(K_n^+) = \binom{n}{2} + 2
\]

\[
e = 99, d = 12, 14 \\
n = 15 \equiv 3
\]

\[
\text{cost} = 2#K_2 + 3#K_3
\]
THEOREM (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For sufficiently large \(n \),

\[
\pi_3(G) \leq \begin{cases}
\frac{n^2}{2} & \text{if } n \equiv 0, 2 \mod 6 \ldots K\frac{n}{2}, \frac{n}{2} \text{ and } K_n, \\
\frac{n^2-1}{2} & \text{if } n \equiv 1, 3, 5 \mod 6 \ldots K\frac{n-1}{2}, \frac{n+1}{2}, \\
\frac{n^2}{2} + 1 & \text{if } n \equiv 4 \mod 6 \ldots K_n.
\end{cases}
\]

Can we find a better upper bound on \(\pi_3(G) \) if we also know the edge-density of \(G \)?
Possible values of $\pi_3(G)$

\[
\pi_3(G)/n^2
\]

\[
\frac{e(G)}{\binom{n}{2}}
\]

Only numerical upper bound. Not clear how the curve looks like. Can you find a lower bound?
Possible values of $\pi_3(G)$

\[
\pi_3(G)/n^2
\]

Only numerical upper bound. Not clear how the curve looks like. Can you find a lower bound?
Possible values of $\pi_3(G)$

$\pi_3(G)/n^2$ vs. $e(G)/(\binom{n}{2})$
Possible values of $\pi_3(G)$

\[
\frac{\pi_3(G)}{n^2}
\]

Only numerical upper bound. Not clear how the curve looks like. Can you find a lower bound?
Possible values of $\pi_3(G)$

Flag algebras on 4 vertices
Possible values of $\pi_3(G)$

Flag algebras on 5 vertices
Possible values of $\pi_3(G)$

Flag algebras on 6 vertices
POSSIBLE VALUES OF $\pi_3(G)$

Flag algebras on 7 vertices
Possible values of $\pi_3(G)$

Flag algebras on 8 vertices
Possible values of $\pi_3(G)$

Flag algebras on 8 vertices
Flag algebras on 8 vertices
Only numerical upper bound. Not clear how the curve looks like. Can you find a lower bound?
Extending the result

\[\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G) \]

Recall \(\nu_{K_3}(G) \) is a size of a maximum triangle packing.
Extending the result

π₃(G) := 2#K₂ + 3#K₃ = 2e(G) − 3ν₃(G)

π₃^α(G) := 2#K₂ + α#K₃ = 2e(G) − (6 − α)ν₃(G)

Recall ν₃(G) is a size of a maximum triangle packing.
Extending the result

\[\pi_3(G) := 2 \# K_2 + 3 \# K_3 = 2e(G) - 3\nu_{K_3}(G) \]

\[\pi^\alpha_3(G) := 2 \# K_2 + \alpha \# K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G) \]

Notice \(\pi_3^\geq 6(G) = 2e(G) \).

Recall \(\nu_{K_3}(G) \) is a size of a maximum triangle packing.
Extending the result

\[\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G) \]

\[\pi_3^\alpha(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G) \]

Notice \(\pi_3^\geq 6(G) = 2e(G) \).

What if \(\alpha < 6 \)? Which graphs maximize \(\pi_3^\alpha \)?

Recall \(\nu_{K_3}(G) \) is a size of a maximum triangle packing.
Extending the result

\[\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G) \]

\[\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G) \]

Notice \(\pi_3^{>6}(G) = 2e(G). \)

What if \(\alpha < 6? \) Which graphs maximize \(\pi_3^{\alpha}? \)

We solved \(\pi_3^{\alpha} \) for \(\alpha = 3. \)

Recall \(\nu_{K_3}(G) \) is a size of a maximum triangle packing.
Extending the result

\[\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G) \]

\[\pi_3^\alpha(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G) \]

Observation

If \(\pi_3^\alpha(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) > \pi_3^\alpha(G) \) then \(\pi_3^\beta(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) > \pi_3^\beta(G) \) for all \(\alpha > \beta \).
Extending the result

\[
\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)
\]

\[
\pi_3^\alpha(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G)
\]

Observation

If \(\pi_3^\alpha(K_{\lfloor \frac{n}{2} \rfloor}, \lceil \frac{n}{2} \rceil) > \pi_3^\alpha(G) \) then \(\pi_3^\beta(K_{\lfloor \frac{n}{2} \rfloor}, \lceil \frac{n}{2} \rceil) > \pi_3^\beta(G) \) for all \(\alpha > \beta \).

Conclusion

For every \(\alpha < 3 \), sufficiently large \(n \) and every graph \(G \) on \(n \) vertices

\[
\pi_3^\alpha(G) \leq \pi_3^\alpha(K_{\lfloor \frac{n}{2} \rfloor}, \lceil \frac{n}{2} \rceil).
\]
Extending the result

\[\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G) \]

\[\pi_3^\alpha(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G) \]

Observation

If \(\pi_3^\alpha(K_n) > \pi_3^\alpha(G) \) then \(\pi_3^\beta(K_n) > \pi_3^\beta(G) \) for all \(\alpha < \beta \).
Extending the result

\[\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G) \]

\[\pi_3^\alpha(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G) \]

Observation
If \(\pi_3^\alpha(K_n) > \pi_3^\alpha(G) \) then \(\pi_3^\beta(K_n) > \pi_3^\beta(G) \) for all \(\alpha < \beta \).

Conclusion
For every \(\alpha > 3 \), sufficiently large \(n \) and every graph \(G \) on \(n \) vertices

\[\pi_3^\alpha(G) \leq \pi_3^\alpha(K_n) \]

unless \(n \equiv 1, 3 \pmod{6} \). The exception is if \(3 < \alpha < 4 \), then

\[\pi_3^\alpha(G) \leq \pi_3^\alpha(K_n^\equiv) \].
If $\alpha > 4$ then $\pi_3^\alpha(G) < \pi_3^\alpha(K_n)$ for all n.

Let G' be obtained from G by adding an edge.

$$\alpha \geq 4$$

$$\pi_3^\alpha(G')$$
If $\alpha > 4$ then $\pi_3^\alpha(G) < \pi_3^\alpha(K_n)$ for all n. Let G' be obtained from G by adding an edge.
If $\alpha > 4$ then $\pi_3^\alpha(G) < \pi_3^\alpha(K_n)$ for all n.
Let G' be obtained from G by adding an edge.
If $\alpha > 4$ then $\pi_3^\alpha(G) < \pi_3^\alpha(K_n)$ for all n.
Let G' be obtained from G by adding an edge.

$\pi_3^\alpha(G')$

$\pi_3^\alpha(G') + 2$

$\pi_3^\alpha(G')$

$\alpha \geq 4$

cost = $2\#K_2 + \alpha\#K_3$
$\alpha \geq 4$

If $\alpha > 4$ then $\pi_3^\alpha(G) < \pi_3^\alpha(K_n)$ for all n.
Let G' be obtained from G by adding an edge.

\[
\begin{align*}
\pi_3^\alpha(G) & \quad \pi_3^\alpha(G') + 2 \\
\pi_3^\alpha(G') & \quad \pi_3^\alpha(G') - 4 + \alpha
\end{align*}
\]

$\text{cost} = 2\#K_2 + \alpha\#K_3$
\(\alpha \geq 4 \)

If \(\alpha > 4 \) then \(\pi_3^\alpha(G) < \pi_3^\alpha(K_n) \) for all \(n \).
Let \(G' \) be obtained from \(G \) by adding an edge.

If \(\alpha = 4 \), then maximizers are

\[
K_n, K_n^-, K_n^=\]

\[\text{cost} = 2\#K_2 + \alpha\#K_3\]
Theorem (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For every $\alpha \geq 0$ exists n_0 such that for all graphs G on $n > n_0$ the following cases hold.

- If $\alpha < 3$ then $\pi_3^\alpha(G) \leq \pi_3^\alpha(K_{\lfloor n/2 \rfloor}, \lceil n/2 \rceil)$.
- If $\alpha = 3$ then $\pi_3^\alpha(G) \leq \max\{\pi_3^\alpha(K_n), \pi_3^\alpha(K_{\lfloor n/2 \rfloor}, \lceil n/2 \rceil)\}$
- If $3 < \alpha < 4$, then $\pi_3^\alpha(G) \leq \max\{\pi_3^\alpha(K_n), \pi_3^\alpha(K_n^-)\}$.
- If $\alpha = 4$, then $\pi_3^\alpha(G) \leq \max\{\pi_3^\alpha(K_n), \pi_3^\alpha(K_n^-), \pi_3^\alpha(K_n^-^-)\}$.
- If $4 < \alpha$, then $\pi_3^\alpha(G) \leq \pi_3^\alpha(K_n)$.

Moreover, these are the only possible extremal examples.
Problem (Erdős)

Assuming that each complete subgraph K_i has weight $i - 1$ ($i = 2, 3, \ldots$), prove that every graph G on n vertices admits a partition into K_is of total weight $w(G)$ at most $n^2/4 = 0.25n^2$.
Problem (Erdős)

Assuming that each complete subgraph K_i has weight $i - 1$ ($i = 2, 3, \ldots$), prove that every graph G on n vertices admits a partition into K_is of total weight $w(G)$ at most $n^2/4 = 0.25n^2$. Using only K_2 and K_3 gives $w(K_n) \approx n^2/3$.
Problem (Erdős)

Assuming that each complete subgraph K_i has weight $i - 1$ ($i = 2, 3, \ldots$), prove that every graph G on n vertices admits a partition into K_is of total weight $w(G)$ at most $n^2 / 4 = 0.25n^2$.

Using only K_2 and K_3 gives $w(K_n) \approx n^2 / 3$.
Flag algebras using K_2, K_3, K_4 give upper bound of $0.27256n^2$.

\[
\frac{w(G)}{n^2} \leq \frac{1}{4} \\
\frac{e(G)}{\binom{n}{2}} \leq 1
\]
Problem (Erdős)

Assuming that each complete subgraph K_i has weight $i - 1$ ($i = 2, 3, \ldots$), prove that every graph G on n vertices admits a partition into K_is of total weight $w(G)$ at most $n^2/4 = 0.25n^2$.

Using only K_2 and K_3 gives $w(K_n) \approx n^2/3$.

Flag algebras using K_2, K_3, K_4 give upper bound of $0.27256n^2$.

Flag algebras using K_2, \ldots, K_7 give upper bound of $0.27256n^2$.

\[
\begin{align*}
\frac{w(G)}{n^2} & \quad K_2, \ldots, K_7 \\
\frac{1}{4} & \quad \frac{1}{2} \\
& \quad e(G) / \binom{n}{2}
\end{align*}
\]
Why Flag Algebras might struggle?

Problem (Simpler)

Assuming that each complete subgraph K_i has weight $i - 1$ ($i = 2, 3, \ldots$), prove that every K_4-free graph G on n vertices admits a partition into K_i of total weight $w(G)$ at most $n^2/4 = 0.25n^2$.

$$w(G)/n^2$$

$$w(G) := \#K_2 + 2\#K_3$$
Why Flag Algebras might struggle?

Problem (Simpler)

Assuming that each complete subgraph K_i has weight $i - 1$ ($i = 2, 3, \ldots$), prove that every K_4-free graph G on n vertices admits a partition into K_i of total weight $w(G)$ at most $n^2/4 = 0.25n^2$.

$$w(G)/n^2$$

$$w(G) := \#K_2 + 2\#K_3$$
Why Flag Algebras might struggle?

Complete 3-partite graph $T_3(n)$

Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n)) \approx \frac{2}{9} n^2 \approx 0.22222n^2$$
Why Flag Algebras might struggle?

Complete 3-partite graph $T_3(n)$

Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n)) \approx \frac{2}{9} n^2 \approx 0.22222 n^2$$

Flag algebras approach:

For every $X \in \binom{V}{3}$ take $\frac{w_f(G[X])}{\binom{n-2}{1}}$ decomposition and sum these.
Why Flag Algebras might struggle?

Complete 3-partite graph $T_3(n)$

Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n)) \approx \frac{2}{9}n^2 \approx 0.22222n^2$$

Flag algebras approach:
For every $X \in \binom{V}{3}$ take $\frac{w_f(G[X])}{\binom{n-2}{1}}$ decomposition and sum these.

Expected cost of decomposition on 3 vertices

$$w(G) := \#K_2 + 2\#K_3$$
Why Flag Algebras might struggle?

Complete 3-partite graph $T_3(n)$

Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n)) \approx \frac{2}{9} n^2 \approx 0.22222 n^2$$

Flag algebras approach:

For every $X \in \binom{V}{3}$ take $\frac{w_f(G[X])}{\binom{n-2}{1}}$ decomposition and sum these.

Expected cost of decomposition on 3 vertices

$$0 \quad \frac{1}{9} \quad + \quad 1 \quad 0 \quad + \quad 2 \quad \frac{6}{9} \quad + \quad 2 \quad \frac{2}{9} \quad = \quad 16/9$$

$$w(G) := \#K_2 + 2\#K_3$$
Why Flag Algebras might struggle?

Complete 3-partite graph $T_3(n)$

Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n)) \approx \frac{2}{9}n^2 \approx 0.22222n^2$$

Flag algebras approach:

For every $X \in \binom{V}{3}$ take $\frac{w_f(G[X])}{\binom{n-2}{1}}$ decomposition and sum these.

Expected cost of decomposition on 3 vertices

\[
\begin{align*}
0 & + \frac{1}{9} & + 1 & \cdot & + 2 & \frac{6}{9} & \cdot & + 2 & \frac{2}{9} \\
\cdot & \cdot
\end{align*}
\]

This gives

$$w(T_3(n)) \leq 0.2963n^2$$

Conclusion: Our formulation using FA is not strong enough.
Problem (Pyber 1991)

Can the edge set of every \(n \)-vertex graph be covered with triangles of weight 3 and edges of weight 2 such that their total weight is at most \(\left\lfloor \frac{n^2}{2} \right\rfloor \)?
Problem (Pyber 1991)

Can the edge set of every n-vertex graph be covered with triangles of weight 3 and edges of weight 2 such that their total weight is at most $\left\lfloor \frac{n^2}{2} \right\rfloor$?

Theorem (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For sufficiently large n,

$$\pi_3(G) \leq \begin{cases}
\frac{n^2}{2} & \text{if } n \equiv 0, 2 \mod 6 \quad \ldots K_{\frac{n}{2}, \frac{n}{2}} \text{ and } K_n, \\
\frac{n^2-1}{2} & \text{if } n \equiv 1, 3, 5 \mod 6 \quad \ldots K_{\frac{n-1}{2}, \frac{n+1}{2}}, \\
\frac{n^2}{2} + 1 & \text{if } n \equiv 4 \mod 6 \quad \ldots K_n.
\end{cases}$$

\[\text{cost} = 2\#K_2 + 3\#K_3\]
Pyber’s problem

\[n = 6k + 4, \text{ find a covering of } G = K_n \text{ of cost } \leq \frac{n^2}{2}. \]

Triangle decomposition: even degrees, \(|E(G)|\) divisible by 3

\[d(v) = 6k + 3 \]
\[e(G) = 3(6k^2 + 7k + 2) \]

\[\text{cost} = 2K_2 + 3K_3 \]
Pyber's problem

\(n = 6k + 4 \), find a covering of \(G = K_n \) of cost \(\leq \frac{n^2}{2} \).

Triangle decomposition: even degrees, \(|E(G)|\) divisible by 3

\[
d(v) = 6k + 2
\]
\[
e(G) = 3(6k^2 + 7k + 2) - 3k - 2
\]

\[\text{cost} = 2\#K_2 + 3\#K_3\]
Pyber’s problem

\[n = 6k + 4, \] find a covering of \(G = K_n \) of cost \(\leq \frac{n^2}{2} \).

Triangle decomposition: even degrees, \(|E(G)| \) divisible by 3

\[d(v) = 6k+2 \text{ or } 6k \]
\[e(G) = 3(6k^2 + 7k + 2) - 3k - 3 \]
\[cost = \frac{n^2}{2} + 1 \]
Pyber’s problem

\[n = 6k + 4, \text{ find a covering of } G = K_n \text{ of cost } \leq \frac{n^2}{2}. \]

Triangle decomposition: even degrees, \(|E(G)|\) divisible by 3

\[d(v) = 6k+2 \text{ or } 6k \]
\[e(G) = 3(6k^2 + 7k + 2) - 3k - 3 \]
\[cost = \frac{n^2}{2} + 1 - 4 + 3 \]
Pyber’s problem

\[n = 6k + 4, \text{ find a covering of } G = K_n \text{ of cost } \leq \frac{n^2}{2}. \]

Triangle decomposition: even degrees, \(|E(G)|\) divisible by 3

\[d(v) = 6k + 2 \text{ or } 6k \]
\[e(G) = 3(6k^2 + 7k + 2) - 3k - 3 \]
\[cost = \frac{n^2}{2} + 1 - 4 + 3 \]

Thank you for your attention