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Some history

Theorem (Erdős, Goodman, Pósa (1966))

The edges of any graph G of order n can be decomposed into at
most bn24 c cliques.

Quick check:

• No triangles → K n
2
, n
2

can be decomposed into n2

4 edges;

• ”All triangles” → Kn can be decomposed into 1
3

(n
2

)
≈ n2

6 triangles.
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Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into
cliques C1, . . . ,C` with

∑
i |Ci | ≤ n2

2 .

2 + 4 + 3 + 3 ≤ 72

2
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The edges of any graph G of order n can be decomposed into
cliques C1, . . . ,C` with

∑
i |Ci | ≤ n2

2 .

2 + 4 + 3 +

3 ≤ 72

2

5



Some history

Theorem (Chung (1981); Győri, Kostochka (1980))
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Some history

Theorem (Chung (1981); Győri, Kostochka (1980))

The edges of any graph G of order n can be decomposed into
cliques C1, . . . ,C` with

∑
i |Ci | ≤ n2

2 .

In general:

• Assign cost cr to a clique Kr .

• Minimize
∑

r cr ·#Kr .

Theorem (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into
edges and triangles C1, . . . ,C` with

∑
i |Ci | ≤ 9n2

16 .

Conjecture (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into
edges and triangles C1, . . . ,C` with

∑
i |Ci | ≤ n2

2 + o(n2).

cost = 2#K2 + 3#K3
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Main result 1

Theorem (Krá ,l, L., Martins, Pehova 2019)

The edges of any graph G of order n can be decomposed into
edges and triangles C1, . . . ,C` with

∑
i |Ci | ≤ n2

2 + o(n2).

Proof outline

1. Obtain a fractional decomposition into edges and triangles.
(flag algebras method)

2. Fractional to full decomposition.
(regularity method)

cost = 2#K2 + 3#K3

7



Main result 1
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Fractional decomposition

Definition
A

fractional

decomposition of a graph G into triangles T and
edges E is an assignment w : T ∪ E → {

[

0, 1

]

} such that for each
e ∈ E (G ): ∑

T⊇e
w(T ) +

∑

e∈E
w(e) = 1.

3 + 2 + 2 + 2 = 9 1
2(3 + 3 + 3 + 3) = 6

K4 doesn’t have a triangle decomposition but it has a fractional
triangle decomposition.

cost = 2#K2 + 3#K3
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Finding a fractional decomposition

Definition
For a graph G , let

π3(G ) = min cost of a triangle-edge decomposition of G

and

π3,f (G ) = min cost of a fractional triangle-edge decomposition of G .

Clearly, π3,f (G ) ≤ π3(G ).

π3(K4) = 9 π3,f (K4) = 6

Our Theorem first step: π3,f (G ) ≤ n2

2 + o(n2)

cost = 2#K2 + 3#K3
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Finding a fractional decomposition

Key lemma (using flag algebras)

Let G be a (large) graph and W be a uniformly chosen random
subset of 7 vertices of G . Then

E [π3,f (G [W ])] ≤ 21 + o(1).

Fractional decomposition of G :
• sum optimal decompositions for all W ∈

(V
7

)

• divide by
(n−2

5

)

Each edge is in
(n−2

5

)
W s so it is a fractional decomposition of G .

π3,f (G ) ≤ 1(n−2
5

)
∑

W

π3,f (G [W ])

≤ 1(n−2
5

)
(
n

7

)
(21 + o(1)) =

n2

2
+ o(n2).
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Main result 1

Theorem (Krá ,l, L., Martins, Pehova 2019)

For any sufficiently large graph G , π3(G ) ≤ n2

2 + o(n2).

Proof

X Obtain a fractional decomposition into edges and triangles
π3,f (G ) ≤ n2

2 + o(n2) (flag algebra methods).

• Fractional to full decomposition (regularity method).

cost = 2#K2 + 3#K3
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Fractional to full decomposition

Definition
H fixed small graph, G large graph.

νH(G ) =max size of H-packing of G ,
νfH(G ) =max size of a fractional H-packing of G .
νH(G ) ≤ νfH(G ).

νK3(K4) = 1 νfK3
(K4) = 2

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

νfH(G ) ≤ νH(G ) + o(n2).
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For any graph H and an n-vertex graph G we have

νfH(G ) ≤ νH(G ) + o(n2).

12



Fractional to full decomposition

Definition
H fixed small graph, G large graph.
νH(G ) =max size of H-packing of G ,
νfH(G ) =max size of a fractional H-packing of G .

νH(G ) ≤ νfH(G ).

νK3(K4) = 1 νfK3
(K4) = 2

Theorem (Haxell, Rödl 2001)
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Fractional to full decomposition

Theorem (Haxell, Rödl 2001)

For any graph H and an n-vertex graph G we have

νfH(G ) ≤ νH(G ) + o(n2).

Notice π3(G ) = 2e(G )− 3νK3(G )

≤ 2e(G )− 3νfK3
(G ) + o(n2)

Corollary

π3(G ) ≤ π3,f (G ) + o(n2) ≤ n2

2
+ o(n2)

Theorem (Yuster 2004)

For a fixed family F of graphs and an n vertex graph G we have

νfF (G ) ≤ νF (G ) + o(n2).

cost = 2#K2 + 3#K3
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Recap

Theorem (Krá ,l, L., Martins, Pehova 2019)

For any sufficiently large graph G

π3(G ) ≤ n2

2
+ o(n2).

What is needed for o(n2)?
Examples:
π3(K n

2
, n
2
) = n2

2

π3(K n−1
2
, n+1

2
) = n2−1

2

π3(Kn) =?

cost = 2#K2 + 3#K3
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Decomposing Kn

Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3

n2−1
2

n odd

n2

2

n even
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Main Result 2

Theorem (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For sufficiently large n,

π3(G ) ≤





n2

2 if n ≡ 0, 2 mod 6 . . .K n
2
, n
2
and Kn,

n2−1
2 if n ≡ 1, 3, 5 mod 6 . . .K n−1

2
, n+1

2
,

n2

2 + 1 if n ≡ 4 mod 6 . . .Kn.

Note π3(K5) = 14 > n2

2 + 1.
The theorem cannot be extended to all n without adding
exception(s).

16



Extremal examples and Stability

If π3,f (G ) ≤
(
1
2 − ε

)
n2 then π3(G ) < 1

2n
2 by Yuster/Haxell,Rödl.

If π3,f (G ) ≥
(
1
2 − ε

)
n2, by flag algebra methods the following

graphs

F =

{
, ,

}

have density at most δ, where δ → 0 as ε→ 0.
By Induced removal lemma, G is F-free up to δ′n2 edges.

Hence G is or up to δ′n2 edges.

17



Exact result Kb n2c,d n2e
G is close to Kb n2c,d n2e, show π3(G ) ≤ π3(Kb n2c,d n2e).

U U

• take maxcut (|E (G )| ≥ n2

4 )

• extra edges, missing edges

• high extra degree vertices U

• triangles with 1 extra edge with U

• other triangles with extra edges

• rest taken as K2s

Theorem (Győri 1988)

If G is a graph with n vertices and n2/4 + k edges, where n→∞
and k = o(n2), then it has at least k − O(k2/n2) edge-disjoint
triangles.

18
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If G is a graph with n vertices and n2/4 + k edges, where n→∞
and k = o(n2), then it has at least k − O(k2/n2) edge-disjoint
triangles.

18



Exact result Kb n2c,d n2e
G is close to Kb n2c,d n2e, show π3(G ) ≤ π3(Kb n2c,d n2e).

U U

• take maxcut (|E (G )| ≥ n2

4 )

• extra edges, missing edges

• high extra degree vertices U

• triangles with 1 extra edge with U

• other triangles with extra edges

• rest taken as K2s

Theorem (Győri 1988)
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Exact result Kn

Theorem (Barber, Kuhn, Lo, Osthus; Dross; Gustavsson)

Every large graph G on n vertices, where |E (G )| is a multiple of 3
and all vertices have even degree at least (9/10 + o(1))n has a
triangle decomposition.

Kn proof overview

• special treatment for low degree vertices

• make all degrees even and |E (G )| divisible by 3

• apply Theorem

Desired conclusion:
If G is close to Kn then π3(G ) ≤ π3(Kn).

19
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Exact result Kn

G is close to Kn and maximize try to show π3(G ) ≤ π3(Kn).

• δ(G ) ≥ n/8

• degree < 0.99n go to U, rest in W

• S ⊆W with odd degree in G

• make degrees in S even

• for u in U cover Nu[W ] by triangles

• cover U edges using K2s.

• make rest triangle divisible

• G is Kn or

• G is Kn without a matching of size 2 (mod 3)
and n ≡ 1, 3 (mod 6).

20
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Kn without a matching

n ≡ 1, 3 (mod 6) means Kn is triangle divisible

e = 105, d = 14

n = 15 ≡ 3

e = 104, d = 13, 14

n = 15 ≡ 3

e = 103, d = 13, 14

n = 15 ≡ 3

π3(Kn) =

(n
2

)

π3(K−n ) =

(n
2

)
+ 1

π3(K=
n ) =

(n
2

)
+ 2

cost = 2#K2 + 3#K3

21
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Improving the result

Theorem (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For sufficiently large n,

π3(G ) ≤





n2

2 if n ≡ 0, 2 mod 6 . . .K n
2
, n
2
and Kn,

n2−1
2 if n ≡ 1, 3, 5 mod 6 . . .K n−1

2
, n+1

2
,

n2

2 + 1 if n ≡ 4 mod 6 . . .Kn.

Can we find a better upper bound on π3(G ) if we also know the
edge-density of G?
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Possible values of π3(G )

e(G)/
(
n
2

)

π3(G)/n
2

0.5 1

0.5

Only numerical upper bound. Not clear how the curve looks like.
Can you find a lower bound?
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Flag algebras on 4 vertices

Only numerical upper bound. Not clear how the curve looks like.
Can you find a lower bound?
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Possible values of π3(G )

Flag algebras on 5 vertices

Only numerical upper bound. Not clear how the curve looks like.
Can you find a lower bound?
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Possible values of π3(G )

Flag algebras on 6 vertices

Only numerical upper bound. Not clear how the curve looks like.
Can you find a lower bound?
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Possible values of π3(G )

Flag algebras on 7 vertices

Only numerical upper bound. Not clear how the curve looks like.
Can you find a lower bound?
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Possible values of π3(G )

Flag algebras on 8 vertices

Only numerical upper bound. Not clear how the curve looks like.
Can you find a lower bound?
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Extending the result

π3(G ) := 2#K2 + 3#K3 = 2e(G )− 3νK3(G )

πα3 (G ) := 2#K2 + α#K3 = 2e(G )− (6− α)νK3(G )

Notice π≥63 (G ) = 2e(G ).

What if α < 6? Which graphs maximize πα3 ?

We solved πα3 for α = 3.

Recall νK3(G ) is a size of a maximum triangle packing.
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Extending the result

π3(G ) := 2#K2 + 3#K3 = 2e(G )− 3νK3(G )

πα3 (G ) := 2#K2 + α#K3 = 2e(G )− (6− α)νK3(G )

Observation
If πα3 (Kb n2c,d n2e) > πα3 (G ) then πβ3 (Kb n2c,d n2e) > πβ3 (G ) for all

α > β.

Conclusion
For every α < 3, sufficiently large n and every graph G on n
vertices

πα3 (G ) ≤ πα3 (Kb n2c,d n2e).
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Observation
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Conclusion
For every α > 3, sufficiently large n and every graph G on n
vertices

πα3 (G ) ≤ πα3 (Kn)

unless n ≡ 1, 3 (mod 6). The exception is if 3 < α < 4, then
πα3 (G ) ≤ πα3 (K=

n ).
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α ≥ 4

If α > 4 then πα3 (G ) < πα3 (Kn) for all n.
Let G ′ be obtained from G by adding an edge.

G

πα3 (G)

G′ G′

If α = 4, then maximizers are

Kn K−n K=
n

cost = 2#K2 + α#K3
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α Summary

Theorem (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For every α ≥ 0 exists n0 such that for all graphs G on n > n0 the
following cases hold.

• If α < 3 then πα3 (G ) ≤ πα3 (Kb n2c,d n2e).

• If α = 3 then πα3 (G ) ≤ max{πα3 (Kn), πα3 (Kb n2c,d n2e)}
• If 3 < α < 4, then πα3 (G ) ≤ max{πα3 (Kn), πα3 (K=

n )}.
• If α = 4, then πα3 (G ) ≤ max{πα3 (Kn), πα3 (K−n ), πα3 (K=

n )}.
• If 4 < α, then πα3 (G ) ≤ πα3 (Kn).

Moreover, these are the only possible extremal examples.

cost = 2#K2 + α#K3

28



Problem (Erdős)

Assuming that each complete subgraph Ki has weight i − 1
(i = 2, 3, . . .), prove that every graph G on n vertices admits a
partition into Ki s of total weight w(G ) at most n2/4 = 0.25n2.

Using only K2 and K3 gives w(Kn) ≈ n2/3.
Flag algebras using K2,K3,K4 give upper bound of 0.27256n2.
Flag algebras using K2, . . . ,K7 give upper bound of 0.27256n2.
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Why Flag Algebras might struggle?

Problem (Simpler)

Assuming that each complete subgraph Ki has weight i − 1
(i = 2, 3, . . .), prove that every K4-free graph G on n vertices
admits a partition into Ki of total weight w(G ) at most
n2/4 = 0.25n2.

e(G)/
(
n
2

)

w(G)/n2

1
2

2
3

1
4 ?

w(G) := #K2 + 2#K3

30
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Why Flag Algebras might struggle?
Complete 3-partite graph T3(n)
Since T3(n) is (almost) triangle decomposable,

w(T3(n)) ≈ 2

9
n2 ≈ 0.22222n2

Flag algebras approach:
For every X ∈

(V
3

)
take wf (G [X ])

(n−2
1 )

decomposition and sum these.

Expected cost of decomposition on 3 vertices

0 + 1 + 2 + 2

= 16/9

This gives
w(T3(n)) ≤ 0.2963n2

Conclusion: Our formulation using FA is not strong enough.

n
3

n
3

n
3

w(G) := #K2 + 2#K3
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One More Problem

Problem (Pyber 1991)

Can the edge set of every n-vertex graph be covered with triangles
of weight 3 and edges of weight 2 such that their total weight is at
most bn22 c?

Theorem (Blumenthal, L., Pikhurko, Pehova, Pfender, Volec)

For sufficiently large n,

π3(G ) ≤





n2

2 if n ≡ 0, 2 mod 6 . . .K n
2
, n
2
and Kn,

n2−1
2 if n ≡ 1, 3, 5 mod 6 . . .K n−1

2
, n+1

2
,

n2

2 + 1 if n ≡ 4 mod 6 . . .Kn.

cost = 2#K2 + 3#K3
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Pyber’s problem

n = 6k + 4, find a covering of G = Kn of cost ≤ n2

2 .
Triangle decomposition: even degrees, |E (G )| divisible by 3

d(v) = 6k+3
e(G ) = 3(6k2 + 7k + 2)

cost = n2

2 + 1

Thank you for your attention

cost = 2#K2 + 3#K3

33
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