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Motivation: Designing experiments.
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Quick check:

. . 2
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H ” R 2 .
e "All triangles” — K, can be decomposed into %('2’) ~ & triangles.
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SOME HISTORY

THEOREM (CHUNG (1981); GY&RI, KOSTOCHKA (1980))

The edges of any graph G of order n can be decomposed into
. . 2
cliques Cy, ..., Cp with ) ;|G| < %

In general:
® Assign cost ¢, to a clique K,.
® Minimize ), ¢, - #K,.

THEOREM (GYORI AND TuzA (1987))

The edges of any graph G of order n can be decomposed into
edges and triangles Cy, ..., Cp with ), |G| < 91—”62.
CONJECTURE (Gy6R1 AND Tuza (1987))

The edges of any graph G of order n can be decomposed into
edges and triangles Cy,...,Co with Y, |G| < ”72 + o(n?).

cost = 24# Ko + 3#K3
a
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THEOREM (KRAL, L., MARTINS, PEHOVA 2019)

The edges of any graph G of order n can be degomposed into
edges and triangles G, ..., G with >, |G| < % + o(n?).

PROOF OUTLINE

1. Obtain a fractional decomposition into edges and triangles.
(flag algebras method)

2. Fractional to full decomposition.

(regularity method) cost = 24Ky + 3#K3
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FRACTIONAL DECOMPOSITION

DEFINITION
A fractional decomposition of a graph G into triangles 7 and
edges £ is an assignment w : T UE — [0,1] such that for each

e € E(G):
ZW(T)+ZW(€):1.
TDe ect
34+42+242=9 1B3+3+3+3)=6

K4 doesn’t have a triangle decomposition but it has a fractional

triangle decomposition. cost = 24K, 4 34K;

IS
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and
73,7(G) = min cost of a fractional triangle-edge decomposition of G.

Clearly, 7T37f(G) < ’/T3(G).
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Let G be a (large) graph and W be a uniformly chosen random
subset of 7 vertices of G. Then

Elmss(G[W])] < 21 + o(1).

Fractional decomposition of G:
® sum optimal decompositions for all W & (‘7/)
o divide by (";?)

Each edge is in (”72

5 ) Ws so it is a fractional decomposition of G.

1
("5%)

< L (;’)(21 +o(1)) = 2+ o(rP).

m3,£(G) <

> me(GIW])
w
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DEFINITION
H fixed small graph, G large graph.

vi(G) =max size of H-packing of G,

vf,(G) =max size of a fractional H-packing of G.

VH(G) S I/'{I(G)
}‘
A

vis(Ka) =1 Vi, (Ka) =2
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FRACTIONAL TO FULL DECOMPOSITION
THEOREM (HAXELL, RODL 2001)

For any graph H and an n-vertex graph G we have

vE(G) < vy(G) + o(n?).

Notice m3(G) = 2e(G) — 3vk,(G) < 2e(G) — 3V,f<3(G) + o(n?)
COROLLARY

n2

73(G) < m3.6(G) + o(n?) < -+ o(n?)

THEOREM (YUSTER 2004)
For a fixed family F of graphs and an n vertex graph G we have
vE(G) < vx(G) + o(n?).

cost = 24# Ko + 3#K3
19
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REcCAP

THEOREM (KRAL, L., MARTINS, PEHOVA 2019)
For any sufficiently large graph G

I72

m3(G) < % + o).

What is needed for o(n?)?
Examples: ,
ms(Kg5) =%

7T3(Kn;1 m) = n22—1

2
m3(Kn) =7

cost = 24# Ko + 3#K3
14
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Conditions for triangle decomposition
- every vertex has even degree
- number of edges is divisible by 3
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MAIN RESULT 2

THEOREM (BLUMENTHAL, L.

For sufficiently large n,

”72 if n
m(G)<{ =L if n
241 if n

Note m3(Ks) = 14 > = 4 1.

, PIKHURKO, PEHOVA, PFENDER, VOLEC)

=0,2 mod6 ...K
=1,3,5 mod6
=4 mod6 ...K,.

The theorem cannot be extended to all n without adding

exception(s).



EXTREMAL EXAMPLES AND STABILITY

—o
‘F - { ’ ’ }
° ° I : I I
have density at most J, where 6 — 0 as ¢ — 0.

By Induced removal lemma, G is F-free up to ¢'n? edges.

Hence G is up to ¢'n® edges.
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G is close to KL L2 show m3(G) < W3(KL2J7[51).
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EXACT RESULT K 12].[2]
G is close to KL%J’B‘I, show 7T3(G) < W3(KL%J’[5—|)

e take maxcut (|E(G)| > 7)

® extra edges, missing edges

® high extra degree vertices U

® triangles with 1 extra edge with U
® other triangles with extra edges

® rest taken as Kos

THEOREM (GYORI 1988)

If G is a graph with n vertices and n?/4 + k edges, where n — oo
and k = o(n?), then it has at least k — O(k?/n?) edge-disjoint
triangles.



ExXACT RESULT K,

THEOREM (BARBER, Kunn, Lo, OsTHUS; DROSS; GUSTAVSSON)

Every large graph G on n vertices, where |E(G)| is a multiple of 3
and all vertices have even degree at least (9/10 + o(1))n has a
triangle decomposition.



ExXACT RESULT K,

THEOREM (BARBER, Kunn, Lo, OsTHUS; DROSS; GUSTAVSSON)

Every large graph G on n vertices, where |E(G)| is a multiple of 3
and all vertices have even degree at least (9/10 + o(1))n has a
triangle decomposition.

K, proof overview
® special treatment for low degree vertices
® make all degrees even and |E(G)| divisible by 3
® apply Theorem

Desired conclusion:
If G is close to K, then m3(G) < m3(K,).



ExXACT RESULT K,

G is close to K, and maximize try to show 73(G) < m3(Kp,).

/

o

\

/

o 5(G)>n/8

20



ExXACT RESULT K,

G is close to K, and maximize try to show 73(G) < m3(Kp,).

2

Uu . W /

® 5(G)>n/8
® degree < 0.99n go to U, rest in W

20



ExXACT RESULT K,

G is close to K, and maximize try to show 73(G) < m3(Kp,).

/ / \ e 5(G)>n/8
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ExXACT RESULT K,

G is close to K, and maximize try to show 73(G) < m3(Kp,).

5(G) > n/8
degree < 0.99n go to U, rest in W
e S C W with odd degree in G

make degrees in S even

for u in U cover N,[W] by triangles

® cover U edges using Kbs.

make rest triangle divisible

e Gis K, or

® G is K, without a matching of size 2 (mod 3)
and n=1,3 (mod 6).

20



K, WITHOUT A MATCHING

ivisible

n=1,3 (mod 6) means K, is triangle d
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cost = 24# Ko + 3#K3
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K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=104,d=13,14 e=103,d = 13,14
n=15=3 =15=3

cost = 24# Ko + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=105,d=14 e=102,d=12,14 e=103,d = 13,14

n=15=3 n=15=3 =15=3
m3(Kn) = (5)
(K, ) =
m3(Ky) =

cost = 24# Ko + 3#K3
91
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n=1,3 (mod 6) means K, is triangle divisible

e=105,d=14 e=102,d=12,14 e=103,d =13,14
n=15=3 n=15=3 n=15=3
m3(Kn) = (5)

m3(K;) = ('27) +1
m3(Ky) =

cost = 24# Ko + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=105,d=14 e=102,d=12,14 e=101,d =12,14
n=15=3 n=15=3 n=15=3
m3(Kn) = (5)

m3(K;) = ('27) +1
m3(Ky) =

cost = 24# Ko + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=105,d=14 e=102,d=12,14 e¢=99,d=12,14
n=15=3 n=15=3 n=15=3
m3(Kn) = (5)

m3(K;) = ('27) +1
m3(Ky) =

cost = 24# Ko + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=102,d =12,14
n=15=3

e=99,d=12,14
n=15=3

cost = 2#Ky + 3#K3

21



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=102,d=12,14 e¢=99,d=12,14
n=15=3 n=15=3

cost = 2#Ky + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=102,d=12,14 e¢=99,d=12,14
n=15=3 n=15=3

cost = 2#Ky + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=105d=14
n=15=3
m3(Kn) = (3)
7T3(Kn_) = (’27) +1
m(Ky) = (3

e=102,d= 13,14

n=15=3 cost = 24# Ko + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=99d=12,14
n=15=3

e=105d=14
n=15=3
m3(Kn) = (3)
7T3(Kn_) = (’27) +1
m(Ky) = (3

e=99,d=12,14

n=15=3 cost = 24# Ko + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=102,d=12,14 e¢=99,d=12,14
n=15=3 n=15=3

e=99,d=12,14

n=15=23 cost = 2#Ky + 3#K3
91



K, WITHOUT A MATCHING

n=1,3 (mod 6) means K, is triangle divisible

e=102,d=12,14 e¢=99,d=12,14
n=15=3 n=15=3

e=99,d=12,14

n=15=23 cost = 2#Ky + 3#K3
91



IMPROVING THE RESULT

THEOREM (BLUMENTHAL, L., PIKHURKO, PEHOVA, PFENDER, VOLEC)

For sufficiently large n,

if n=0,2 mod6 ...Knn and K,,

272

:ro'\":m

m3(G) < ;1 if n=1,3,5 mod®6 ...Kn;17%7
"72+1 if n=4 mod6 ...K,.

Can we find a better upper bound on 73(G) if we also know the
edge-density of G?

99



POSSIBLE VALUES OF 73(G)

m3(G)/n?
05 e e e

0.5 1
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m3(G)/n?
05 A
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POSSIBLE VALUES OF 73(G)

m3(G)/n?

0.5
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POSSIBLE VALUES OF 73(G)

m3(G)/n?

0.5

929



O
POSSIBLE VALUES OF 73(G)

Flag algebras on 4 vertices

929



O
POSSIBLE VALUES OF 73(G)

Flag algebras on 5 vertices
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POSSIBLE VALUES OF 73(G)

Flag algebras on 6 vertices
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POSSIBLE VALUES OF 73(G)

Flag algebras on 7 vertices
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POSSIBLE VALUES OF 73(G)

Flag algebras on 8 vertices

929



O
POSSIBLE VALUES OF 73(G)

Flag algebras on 8 vertices

929



POSSIBLE VALUES OF 73(G)

Flag algebras on 8 vertices
Only numerical upper bound. Not clear how the curve looks like.
Can you find a lower bound?

929



EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3I/K3(G)

Recall vk, (G) is a size of a maximum triangle packing.

24



EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3I/K3(G)

W?(G) = 2#HKo + a#Ks = 26(G) - (6 — (Jé)l/K3(G)

Recall vk, (G) is a size of a maximum triangle packing.
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EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3I/K3(G)

W?(G) = 2#HKo + a#Ks = 26(G) - (6 — (Jé)l/K3(G)

Notice 77326(G) = 2¢(G).

Recall vk, (G) is a size of a maximum triangle packing.
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EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3I/K3(G)
W?(G) = 2#HKo + a#Ks = 26(G) - (6 — (Jé)l/K3(G)
Notice 77326(G) = 2¢(G).

What if o« < 67 Which graphs maximize 757

Recall vk, (G) is a size of a maximum triangle packing.
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EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3I/K3(G)

W?(G) = 2#HKo + a#Ks = 26(G) - (6 — (Jé)l/K3(G)

Notice 77326(G) = 2¢(G).
What if o« < 67 Which graphs maximize 757

We solved 7§ for av = 3.

Recall vk, (G) is a size of a maximum triangle packing.

241



EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3VK3(G)
W?(G) = 2#HKo + a#Ks = 26(G) - (6 - Oé)l/K3(G)
OBSERVATION

/f’/Té)‘(KLgJ’H]) > W?(G) then ﬂ—g(KLng[ﬂ) > W?(G) for all
a > b.



EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3I/K3(G)

W?(G) = 2#HKo + a#Ks = 26(G) - (6 - Oé)l/K3(G)

OBSERVATION

B B
/f’/T%(KLgJ’(g]) > W?(G) then 71—3(KL§J?[§1) > 7T3(G) for all
a > b.
CONCLUSION
For every o < 3, sufficiently large n and every graph G on n
vertices

m5(6) = 75 (K)o | ra7)-

95



EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3VK3(G)

W?(G) = 2#HKo + a#Ks = 26(G) - (6 - Oé)l/K3(G)

OBSERVATION
If 75 (Kn) > 74 (G) then w5 (K,) > 75 (G) for all e < .
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EXTENDING THE RESULT

7T3(G) = 24#Ky + 3#K3 = 2e(G) — 3I/K3(G)

W?(G) = 2#HKo + a#Ks = 26(G) - (6 - Oé)l/K3(G)

OBSERVATION
If 75 (Kn) > 74 (G) then w5 (K,) > 75 (G) for all e < .

CONCLUSION
For every o« > 3, sufficiently large n and every graph G on n
vertices

73(G) < 73 (Kn)
unless n = 1,3 (mod 6). The exception is if 3 < o < 4, then
7$(G) < 7§ (Ky).

n

26



a >4

If &« > 4 then 7§(G) < 7§ (K,) for all n.
Let G’ be obtained from G by adding an edge.

cost = 24# Ko + a# K3
9
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If &« > 4 then 7§(G) < 7§ (K,) for all n.
Let G’ be obtained from G by adding an edge.

cost = 24# Ko + a# K3
9
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If &« > 4 then 7§(G) < 7§ (K,) for all n.
Let G’ be obtained from G by adding an edge.

cost = 24# Ko + a# K3
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a >4

If &« > 4 then 7§(G) < 7§ (K,) for all n.
Let G’ be obtained from G by adding an edge.

cost = 24# Ko + a# K3
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a >4

If &« > 4 then 7§(G) < 7§ (K,) for all n.
Let G’ be obtained from G by adding an edge.

cost = 24# Ko + a# K3
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a >4

If &« > 4 then 7§(G) < 7§ (K,) for all n.
Let G’ be obtained from G by adding an edge.

G

Kn cost = 24# Ko + a# K3
9



a SUMMARY

THEOREM (BLUMENTHAL, L., PIKHURKO, PEHOVA, PFENDER, VOLEC)

For every o > 0 exists ny such that for all graphs G on n > ng the
following cases hold.
® [fa <3 then n§(G) < n§ (K L2J(ﬂ)
® If o =3 then 1§ (G) < max{n§(K,), W?(KHJH})}
® If3 < a<4, then 1§ (G) < max{m§(Ky), m$(K;)}-
® [fa =4, then 1§(G) < max{n§(K,), 75 (K, )
® [f4 < a, then 1§(G) < §(Kp).

Moreover, these are the only possible extremal examples.

cost = 24# Ko + a#K3
28



PROBLEM (ERDOS)

Assuming that each complete subgraph K; has weight i — 1
(i=2,3,...), prove that every graph G on n vertices admits a
partition into Kis of total weight w(G) at most n?/4 = 0.25n?.

920



PROBLEM (ERDOS)

Assuming that each complete subgraph K; has weight i — 1
(i=2,3,...), prove that every graph G on n vertices admits a
partition into Kis of total weight w(G) at most n?/4 = 0.25n?.

Using only K> and K3 gives w(K,) ~ n?/3.

920



PROBLEM (ERDOS)

Assuming that each complete subgraph K; has weight i — 1
(i=2,3,...), prove that every graph G on n vertices admits a

partition into Kis of total weight w(G) at most n?/4 = 0.25n?.

Using only K> and K3 gives w(K,) ~ n?/3.
Flag algebras using Ko, K3, K4 give upper bound of 0.27256n°.

N = T

920



PROBLEM (ERDOS)

Assuming that each complete subgraph K; has weight i — 1
(i=2,3,...), prove that every graph G on n vertices admits a

partition into Kis of total weight w(G) at most n?/4 = 0.25n?.

Using only K> and K3 gives w(K,) ~ n?/3.
Flag algebras using Ko, K3, K4 give upper bound of 0.27256n°.
Flag algebras using Ko, ..., K7 give upper bound of 0.27256n°.

N = T

920



WHY FLAG ALGEBRAS MIGHT STRUGGLE?
PROBLEM (SIMPLER)

Assuming that each complete subgraph K; has weight i — 1
(i=2,3,...), prove that every Ky-free graph G on n vertices
admits a partition into K; of total weight w(G) at most
n?/4 = 0.25n°.

w(G)/n?

=

- e(G)/(5)

w(G) := #Ko + 2#K3
20

N—= 4
wWIN



WHY FLAG ALGEBRAS MIGHT STRUGGLE?
PROBLEM (SIMPLER)

Assuming that each complete subgraph K; has weight i — 1
(i=2,3,...), prove that every Ky-free graph G on n vertices
admits a partition into K; of total weight w(G) at most
n?/4 = 0.25n°.

w(G)/n?

=

- e(G)/(5)

w(G) := #Ko + 2#K3
20

N—= 4
wWIN



WHY FLAG ALGEBRAS MIGHT STRUGGLE?
Complete 3-partite graph T3(n)
Since T3(n) is (almost) triangle decomposable, e

2
w(Ts(n)) = §n2 ~ 0.22222n° eAe

w(G) := #Ko + 2#K3
a1



WhHY FLAG ALGEBRAS MIGHT STRUGGLE?
Complete 3-partite graph T3(n)
Since T3(n) is (almost) triangle decomposable, e

w(Ts(n)) = §n2 ~ 0.22222n° eAe

Flag algebras approach
For every X € (Y) take % decomposition and sum these.
1

N

W(G) = #Ko + 2#K3
21



WhHY FLAG ALGEBRAS MIGHT STRUGGLE?
Complete 3-partite graph T3(n)
Since T3(n) is (almost) triangle decomposable, a

~ 0.22222n? aAe
Flag algebras approach

For every X € (Y) take ((n [)]) decomposition and sum these.
1

w(Ts(n)) ~

N
3

Expected cost of decomposition on 3 vertices

° °
0 +1 +2/\+2A
° ° — o

W(G) = #Ko + 2#K3
21



WhHY FLAG ALGEBRAS MIGHT STRUGGLE?
Complete 3-partite graph T3(n)
Since T3(n) is (almost) triangle decomposable,

~ 0.22222n? aAe
Flag algebras approach

For every X € (Y) take ((n [)]) decomposition and sum these.
1

Expected cost of decomposition on 3 vertices

° °
0 é +1 9 +2ﬁ\+2:16/9
° ° o

w(Ts(n)) ~

N
3

W(G) = #Ko + 2#K3
21



WhHY FLAG ALGEBRAS MIGHT STRUGGLE?
Complete 3-partite graph T3(n)
Since T3(n) is (almost) triangle decomposable, a

~ 0.22222n? aAe
Flag algebras approach

For every X € (Y) take ((n [)]) decomposition and sum these.
1

w(Ts(n)) ~

N
3

Expected cost of decomposition on 3 vertices

[ ] (]
0 1 41 g +2ﬁ\+2:16/9
[ ] 9 [ ] *——O 9

This gives
w(T3(n)) < 0.2963n°
Conclusion: Our formulation using FA is not strong enough.

V\/(G) = #Ko + 2#K3
21



ONE MORE PROBLEM

PrOBLEM (PYBER 1991)

Can the edge set of every n-vertex graph be covered with triangles
of weighzt 3 and edges of weight 2 such that their total weight is at
most | 5|7

cost = 24# Ko + 3#K3
29



ONE MORE PROBLEM

PrOBLEM (PYBER 1991)

Can the edge set of every n-vertex graph be covered with triangles
of weight 3 and edges of weight 2 such that their total weight is at

most {”71 ?

THEOREM (BLUMENTHAL, L., PIKHURKO, PEHOVA, PFENDER, VOLEC)

For sufficiently large n,

m3(G) < ¢ 52

if n=0,2 mod®6
if n=1,3,5 mod®6
if n=4 mod6 ...K,.

cost = 24# Ko + 3#K3
29



PYBER’S PROBLEM

n = 6k + 4, find a covering of G = K}, of cost < "72
Triangle decomposition: even degrees, |E(G)| divisible by 3

d(v) = 6k+3
e(G) = 3(6k> + 7k +2)

cost = 2#Ks + 3#K3
29



PYBER’S PROBLEM

n = 6k + 4, find a covering of G = K}, of cost < "72
Triangle decomposition: even degrees, |E(G)| divisible by 3

d(v) = 6k+2
e(G) = 3(6k> + Tk +2) — 3k — 2

cost = 24# Ko + 3#K3
29



PYBER’S PROBLEM

n = 6k + 4, find a covering of G = K}, of cost < "72

Triangle decomposition: even degrees, |E(G)| divisible by 3

N7/
Ay Ve
JISRTRAN
N XA \AXT)

™ A
’ V’V
2

d(v) = 6k+2 or 6k
e(G) = 3(6k> + 7k +2) — 3k — 3
cost = ”72 +1

cost = 24# Ko + 3#K3
29



PYBER’S PROBLEM

n = 6k + 4, find a covering of G = K}, of cost < "72
Triangle decomposition: even degrees, |E(G)| divisible by 3

N7/
4-2‘;3‘2&‘—\‘7
Vev AVAVD S
SR
OIS RSRAN
ST
m‘ A‘Ay.“:\\“
7 N7 7 28
N

d(v) = 6k+2 or 6k
e(G) = 3(6k> + 7k +2) — 3k — 3
cost:”;+1—4+3

cost = 24# Ko + 3#K3
29



PYBER’S PROBLEM

n = 6k + 4, find a covering of G = K}, of cost < "72
Triangle decomposition: even degrees, |E(G)| divisible by 3

e
IS TRSKAN

N\ '\ A—17
WO

A
"é::“ﬂgﬂ!a.’\

d(v) = 6k+2 or 6k
e(G) = 3(6k> + 7k +2) — 3k — 3
cost:”;+1—4+3

Thank you for your attention

cost = 24# Ko + 3#K3
29
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