Decomposing graphs into edges and Triangles

Adam Blumenthal Daniel Kráľ <u>Bernard Lidický</u> Yanitsa Pehova Taísa Martins <u>Oleg Pikhurko</u> Florian Pfender Jan Volec

> Atlanta Lecture Series March 30, 2019

USE ACROREAD, NO SMOOTHS

Adam Blumenthal

Daniel Kráľ

Florian Pfender

Taísa Martins

Oleg Pikhurko

Jan Volec

GRWC

Motivation: Designing experiments.

THEOREM (ERDŐS, GOODMAN, PÓSA (1966)) The edges of any graph G of order n can be decomposed into at most $\lfloor \frac{n^2}{4} \rfloor$ cliques. THEOREM (ERDŐS, GOODMAN, PÓSA (1966)) The edges of any graph G of order n can be decomposed into at most $\lfloor \frac{n^2}{4} \rfloor$ edges and triangles. THEOREM (ERDŐS, GOODMAN, PÓSA (1966)) The edges of any graph G of order n can be decomposed into at most $\lfloor \frac{n^2}{4} \rfloor$ edges and triangles.

Quick check:

THEOREM (ERDŐS, GOODMAN, PÓSA (1966)) The edges of any graph G of order n can be decomposed into at most $\lfloor \frac{n^2}{4} \rfloor$ edges and triangles.

Quick check:

• No triangles $\rightarrow K_{\frac{n}{2},\frac{n}{2}}$ can be decomposed into $\frac{n^2}{4}$ edges;

THEOREM (ERDŐS, GOODMAN, PÓSA (1966)) The edges of any graph G of order n can be decomposed into at most $\lfloor \frac{n^2}{4} \rfloor$ edges and triangles.

Quick check:

- No triangles $\rightarrow K_{\frac{n}{2},\frac{n}{2}}$ can be decomposed into $\frac{n^2}{4}$ edges;
- "All triangles" $\rightarrow K_n$ can be decomposed into $\frac{1}{3} \binom{n}{2} \approx \frac{n^2}{6}$ triangles.

THEOREM (CHUNG (1981); GYŐRI, KOSTOCHKA (1980)) The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_{ℓ} with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

- Assign cost c_r to a clique K_r .
- Minimize $\sum_{r} c_r \cdot \# K_r$.

THEOREM (CHUNG (1981); GYŐRI, KOSTOCHKA (1980)) The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_{ℓ} with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

- Assign cost c_r to a clique K_r .
- Minimize $\sum_{r} c_r \cdot \# K_r$.

THEOREM (GYŐRI AND TUZA (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{9n^2}{16}$.

THEOREM (CHUNG (1981); GYŐRI, KOSTOCHKA (1980)) The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_{ℓ} with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

- Assign cost c_r to a clique K_r .
- Minimize $\sum_{r} c_r \cdot \# K_r$.

THEOREM (GYŐRI AND TUZA (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_{ℓ} with $\sum_i |C_i| \le \frac{9n^2}{16}$.

Conjecture (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_{ℓ} with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

THEOREM (CHUNG (1981); GYŐRI, KOSTOCHKA (1980)) The edges of any graph G of order n can be decomposed into cliques C_1, \ldots, C_{ℓ} with $\sum_i |C_i| \leq \frac{n^2}{2}$.

In general:

- Assign cost c_r to a clique K_r .
- Minimize $\sum_{r} c_r \cdot \# K_r$.

THEOREM (GYŐRI AND TUZA (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{9n^2}{16}$.

Conjecture (Győri and Tuza (1987))

The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_{ℓ} with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

$$cost = 2\#K_2 + 3\#K_3$$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

$$cost = 2\#K_2 + 3\#K_3$$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

$$cost = 2\#K_2 + 3\#K_3$$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

PROOF OUTLINE

1. Obtain a fractional decomposition into edges and triangles. (flag algebras method)

$$cost = 2 \# K_2 + 3 \# K_3$$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) The edges of any graph G of order n can be decomposed into edges and triangles C_1, \ldots, C_ℓ with $\sum_i |C_i| \le \frac{n^2}{2} + o(n^2)$.

PROOF OUTLINE

- 1. Obtain a fractional decomposition into edges and triangles. (flag algebras method)
- 2. Fractional to full decomposition. (regularity method)

DEFINITION

A decomposition of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow \{0, 1\}$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1$$

$$cost = 2\#K_2 + 3\#K_3$$

DEFINITION

A decomposition of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow \{0, 1\}$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1$$

3

DEFINITION

A decomposition of a graph G into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow \{0, 1\}$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1$$

3 + 2 + 2 + 2 = 9

DEFINITION

A *fractional decomposition* of a graph *G* into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow [0,1]$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1$$

DEFINITION

A *fractional decomposition* of a graph *G* into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow [0,1]$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1$$

3 + 2 + 2 + 2 = 9

 $\frac{1}{2}(3+3+3+3)=6$

DEFINITION

A *fractional decomposition* of a graph *G* into triangles \mathcal{T} and edges \mathcal{E} is an assignment $w : \mathcal{T} \cup \mathcal{E} \rightarrow [0,1]$ such that for each $e \in E(G)$:

$$\sum_{T \supseteq e} w(T) + \sum_{e \in \mathcal{E}} w(e) = 1$$

3+2+2+2=9 $\frac{1}{2}(3+3+3+3)=6$

 K_4 doesn't have a triangle decomposition but it has a fractional triangle decomposition. $cost = 2\#K_2 + 3\#K_3$
DEFINITION For a graph G, let

 $\pi_3(G) = \min$ cost of a triangle-edge decomposition of G

$$cost = 2\#K_2 + 3\#K_3$$

DEFINITION For a graph G, let

 $\pi_3(G) = \min \text{ cost of a triangle-edge decomposition of } G$

and

 $\pi_{3,f}(G) = \min \text{ cost of a fractional triangle-edge decomposition of } G.$

$$cost = 2\#K_2 + 3\#K_3$$

DEFINITION For a graph G, let

 $\pi_3(G) = \min \text{ cost of a triangle-edge decomposition of } G$ and

 $\pi_{3,f}(G) = \min \text{ cost of a fractional triangle-edge decomposition of } G.$ Clearly, $\pi_{3,f}(G) \leq \pi_3(G)$.

$$cost = 2\#K_2 + 3\#K_3$$

DEFINITION For a graph G, let

 $\pi_3(G) = \min$ cost of a triangle-edge decomposition of G

and

 $\pi_{3,f}(G) = \min \text{ cost of a fractional triangle-edge decomposition of } G.$

Clearly, $\pi_{3,f}(G) \leq \pi_3(G)$.

DEFINITION For a graph G, let

 $\pi_3(G) = \min \text{ cost of a triangle-edge decomposition of } G$

and

 $\pi_{3,f}(G) = \min \text{ cost of a fractional triangle-edge decomposition of } G.$

Clearly, $\pi_{3,f}(G) \leq \pi_3(G)$.

Our Theorem first step: $\pi_{3,f}(G) \leq \frac{n^2}{2} + o(n^2)$

KEY LEMMA (USING FLAG ALGEBRAS)

Let G be a (large) graph and W be a uniformly chosen random subset of 7 vertices of G. Then

 $E[\pi_{3,f}(G[W])] \leq 21 + o(1).$

Key Lemma (using flag algebras)

Let G be a (large) graph and W be a uniformly chosen random subset of 7 vertices of G. Then

 $E[\pi_{3,f}(G[W])] \leq 21 + o(1).$

Fractional decomposition of G:

- sum optimal decompositions for all $W \in \binom{V}{7}$
- divide by $\binom{n-2}{5}$

Each edge is in $\binom{n-2}{5}$ Ws so it is a fractional decomposition of G.

KEY LEMMA (USING FLAG ALGEBRAS)

Let G be a (large) graph and W be a uniformly chosen random subset of 7 vertices of G. Then

 $E[\pi_{3,f}(G[W])] \leq 21 + o(1).$

Fractional decomposition of G:

- sum optimal decompositions for all $W \in \binom{V}{7}$
- divide by $\binom{n-2}{5}$ Each edge is in $\binom{n-2}{5}$ Ws so it is a fractional decomposition of G.

$$\pi_{3,f}(G) \leq \frac{1}{\binom{n-2}{5}} \sum_{W} \pi_{3,f}(G[W])$$
$$\leq \frac{1}{\binom{n-2}{5}} \binom{n}{7} (21 + o(1)) = \frac{n^2}{2} + o(n^2)$$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) For any sufficiently large graph G, $\pi_3(G) \leq \frac{n^2}{2} + o(n^2)$.

Proof

✓ Obtain a fractional decomposition into edges and triangles $\pi_{3,f}(G) \le \frac{n^2}{2} + o(n^2)$ (flag algebra methods).

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) For any sufficiently large graph G, $\pi_3(G) \leq \frac{n^2}{2} + o(n^2)$.

Proof

- ✓ Obtain a fractional decomposition into edges and triangles $\pi_{3,f}(G) \leq \frac{n^2}{2} + o(n^2)$ (flag algebra methods).
- Fractional to full decomposition (regularity method).

DEFINITION

H fixed small graph, G large graph.

DEFINITION *H* fixed small graph, *G* large graph. $\nu_H(G) = \max$ size of *H*-packing of *G*,

 $\nu_{K_3}(K_4) = 1$

DEFINITION *H* fixed small graph, *G* large graph. $\nu_H(G) = \max$ size of *H*-packing of *G*, $\nu_H^f(G) = \max$ size of a fractional *H*-packing of *G*.

 $\nu_{K_3}(K_4) = 1$

$$\nu_{K_3}^f(K_4) = 2$$

DEFINITION *H* fixed small graph, *G* large graph. $\nu_H(G) = \max$ size of *H*-packing of *G*, $\nu_H^f(G) = \max$ size of a fractional *H*-packing of *G*. $\nu_H(G) \le \nu_H^f(G)$.

 $\nu_{K_2}(K_4) = 1$

 $\nu_{K_2}^f(K_4) = 2$

DEFINITION *H* fixed small graph, *G* large graph. $\nu_H(G) = \max$ size of *H*-packing of *G*, $\nu_H^f(G) = \max$ size of a fractional *H*-packing of *G*. $\nu_H(G) \le \nu_H^f(G)$.

 $u_{K_3}(K_4)=1$

 $\nu_{K_3}^f(K_4)=2$

THEOREM (HAXELL, RÖDL 2001) For any graph H and an *n*-vertex graph G we have

 $\nu_H^f(G) \leq \nu_H(G) + o(n^2).$

 $\nu_H^f(G) \leq \nu_H(G) + o(n^2).$

$$cost = 2\#K_2 + 3\#K_3$$

 $\nu_H^f(G) \leq \nu_H(G) + o(n^2).$

Notice $\pi_3(G) = 2e(G) - 3\nu_{K_3}(G)$

 $\nu_H^f(G) \leq \nu_H(G) + o(n^2).$

Notice $\pi_3(G) = 2e(G) - 3\nu_{K_3}(G) \le 2e(G) - 3\nu_{K_3}^f(G) + o(n^2)$

$$cost = 2\#K_2 + 3\#K_3$$

 $\nu_H^f(G) \leq \nu_H(G) + o(n^2).$

Notice $\pi_3(G) = 2e(G) - 3\nu_{\mathcal{K}_3}(G) \le 2e(G) - 3\nu_{\mathcal{K}_3}^f(G) + o(n^2)$ COROLLARY

$$\pi_3(G) \le \pi_{3,f}(G) + o(n^2) \le \frac{n^2}{2} + o(n^2)$$

 $\nu_H^f(G) \leq \nu_H(G) + o(n^2).$

Notice $\pi_3(G) = 2e(G) - 3\nu_{K_3}(G) \le 2e(G) - 3\nu_{K_3}^f(G) + o(n^2)$ COROLLARY

$$\pi_3(G) \le \pi_{3,f}(G) + o(n^2) \le \frac{n^2}{2} + o(n^2)$$

THEOREM (YUSTER 2004)

For a fixed family \mathcal{F} of graphs and an *n* vertex graph *G* we have

 $u_{\mathcal{F}}^{f}(G) \leq \nu_{\mathcal{F}}(G) + o(n^{2}).$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$

$$cost = 2\#K_2 + 3\#K_3$$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$

What is needed for $o(n^2)$?

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$

What is needed for $o(n^2)$? Examples: $\pi_3(K_{\frac{n}{2},\frac{n}{2}}) = \frac{n^2}{2}$ $\pi_3(K_{\frac{n-1}{2},\frac{n+1}{2}}) = \frac{n^2-1}{2}$

THEOREM (KRÁL, L., MARTINS, PEHOVA 2019) For any sufficiently large graph G

$$\pi_3(G) \leq \frac{n^2}{2} + o(n^2).$$

What is needed for $o(n^2)$? Examples: $\pi_3(K_{\frac{n}{2},\frac{n}{2}}) = \frac{n^2}{2}$ $\pi_3(K_{\frac{n-1}{2},\frac{n+1}{2}}) = \frac{n^2-1}{2}$ $\pi_3(K_n) = ?$

- every vertex has even degree
- number of edges is divisible by 3

Conditions for triangle decomposition

- every vertex has even degree
- number of edges is divisible by 3

 $n = 9 \equiv 3$ $n = 10 \equiv 4$

$$n = 8 \equiv 2$$

e = 36, d = 8 e = 45, d = 9 e = 55, d = 10

$$n = 11 \equiv 5$$

- every vertex has even degree
- number of edges is divisible by 3

$$n = 11 \equiv 5$$

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

- every vertex has even degree
- number of edges is divisible by 3

Main Result 2

THEOREM (BLUMENTHAL, L., PIKHURKO, PEHOVA, PFENDER, VOLEC) For sufficiently large n,

$$\pi_{3}(G) \leq \begin{cases} \frac{n^{2}}{2} & \text{if } n \equiv 0, 2 \mod 6 \quad \dots \quad K_{\frac{n}{2}, \frac{n}{2}} \text{ and } K_{n}, \\ \frac{n^{2}-1}{2} & \text{if } n \equiv 1, 3, 5 \mod 6 \quad \dots \quad K_{\frac{n-1}{2}, \frac{n+1}{2}}, \\ \frac{n^{2}}{2}+1 & \text{if } n \equiv 4 \mod 6 \quad \dots \quad K_{n}. \end{cases}$$

Note $\pi_3(K_5) = 14 > \frac{n^2}{2} + 1$. The theorem cannot be extended to all *n* without adding exception(s).

EXTREMAL EXAMPLES AND STABILITY

If $\pi_{3,f}(G) \leq (\frac{1}{2} - \varepsilon) n^2$ then $\pi_3(G) < \frac{1}{2}n^2$ by Yuster/Haxell,Rödl. If $\pi_{3,f}(G) \geq (\frac{1}{2} - \varepsilon) n^2$, by flag algebra methods the following graphs

have density at most δ , where $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0$. By Induced removal lemma, G is \mathcal{F} -free up to $\delta' n^2$ edges.

Hence G is given or $\delta' n^2$ edges.

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges
- high extra degree vertices U

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges
- high extra degree vertices U

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
- other triangles with extra edges

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
- other triangles with extra edges
- rest taken as K₂s

- take maxcut $(|E(G)| \ge \frac{n^2}{4})$
- extra edges, missing edges
- high extra degree vertices U
- triangles with 1 extra edge with U
- other triangles with extra edges
- rest taken as K₂s

THEOREM (GYŐRI 1988)

If G is a graph with n vertices and $n^2/4 + k$ edges, where $n \to \infty$ and $k = o(n^2)$, then it has at least $k - O(k^2/n^2)$ edge-disjoint triangles. THEOREM (BARBER, KUHN, LO, OSTHUS; DROSS; GUSTAVSSON) Every large graph G on n vertices, where |E(G)| is a multiple of 3 and all vertices have even degree at least (9/10 + o(1))n has a triangle decomposition. THEOREM (BARBER, KUHN, LO, OSTHUS; DROSS; GUSTAVSSON) Every large graph G on n vertices, where |E(G)| is a multiple of 3 and all vertices have even degree at least (9/10 + o(1))n has a triangle decomposition.

 K_n proof overview

- special treatment for low degree vertices
- make all degrees even and |E(G)| divisible by 3
- apply Theorem

Desired conclusion:

If G is close to K_n then $\pi_3(G) \leq \pi_3(K_n)$.

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in *S* even

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in *S* even

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in **S** even
- for u in U cover $N_u[W]$ by triangles

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in **S** even
- for u in U cover $N_u[W]$ by triangles

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in **S** even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2 s.

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in **S** even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2 s.
- make rest triangle divisible

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in **S** even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2 s.
- make rest triangle divisible

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in **S** even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2 s.
- make rest triangle divisible

- $\delta(G) \ge n/8$
- degree < 0.99n go to U, rest in W
- $S \subseteq W$ with odd degree in G
- make degrees in **S** even
- for u in U cover $N_u[W]$ by triangles
- cover U edges using K_2 s.
- make rest triangle divisible

- G is K_n or
- G is K_n without a matching of size 2 (mod 3) and n ≡ 1,3 (mod 6).

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

K_n WITHOUT A MATCHING

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

K_n WITHOUT A MATCHING

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

K_n without a matching

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

K_n without a matching

 $n \equiv 1,3 \pmod{6}$ means K_n is triangle divisible

THEOREM (BLUMENTHAL, L., PIKHURKO, PEHOVA, PFENDER, VOLEC) For sufficiently large n,

$$\pi_{3}(G) \leq \begin{cases} \frac{n^{2}}{2} & \text{if } n \equiv 0, 2 \mod 6 \dots K_{\frac{n}{2}, \frac{n}{2}} \text{ and } K_{n}, \\ \frac{n^{2}-1}{2} & \text{if } n \equiv 1, 3, 5 \mod 6 \dots K_{\frac{n-1}{2}, \frac{n+1}{2}}, \\ \frac{n^{2}}{2}+1 & \text{if } n \equiv 4 \mod 6 \dots K_{n}. \end{cases}$$

Can we find a better upper bound on $\pi_3(G)$ if we also know the edge-density of G?

Flag algebras on 4 vertices

Flag algebras on 5 vertices

Flag algebras on 6 vertices

Flag algebras on 7 vertices

Flag algebras on 8 vertices

Flag algebras on 8 vertices

Flag algebras on 8 vertices Only numerical upper bound. Not clear how the curve looks like. Can you find a lower bound?

$$\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$$

$$\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$$
$$\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - \frac{(6-\alpha)}{\nu_{K_3}(G)}$$

$$\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$$
$$\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G)$$

Notice $\pi_3^{\geq 6}(G) = 2e(G)$.

 $\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$ $\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G)$

Notice $\pi_3^{\geq 6}(G) = 2e(G)$. What if $\alpha < 6$? Which graphs maximize π_3^{α} ?

 $\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$ $\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_2}(G)$

Notice $\pi_3^{\geq 6}(G) = 2e(G)$. What if $\alpha < 6$? Which graphs maximize π_3^{α} ? We solved π_3^{α} for $\alpha = 3$.

$$\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$$
$$\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G)$$

OBSERVATION If $\pi_3^{\alpha}(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) > \pi_3^{\alpha}(G)$ then $\pi_3^{\beta}(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) > \pi_3^{\beta}(G)$ for all $\alpha > \beta$.

$$\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$$
$$\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G)$$

OBSERVATION
If
$$\pi_3^{\alpha}(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) > \pi_3^{\alpha}(G)$$
 then $\pi_3^{\beta}(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}) > \pi_3^{\beta}(G)$ for all $\alpha > \beta$.

CONCLUSION

For every $\alpha < 3$, sufficiently large n and every graph G on n vertices

 $\pi_3^{\alpha}(G) \leq \pi_3^{\alpha}(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}).$

$$\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$$
$$\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G)$$

OBSERVATION If $\pi_3^{\alpha}(K_n) > \pi_3^{\alpha}(G)$ then $\pi_3^{\beta}(K_n) > \pi_3^{\beta}(G)$ for all $\alpha < \beta$.

$$\pi_3(G) := 2\#K_2 + 3\#K_3 = 2e(G) - 3\nu_{K_3}(G)$$
$$\pi_3^{\alpha}(G) := 2\#K_2 + \alpha\#K_3 = 2e(G) - (6 - \alpha)\nu_{K_3}(G)$$

OBSERVATION If $\pi_3^{\alpha}(K_n) > \pi_3^{\alpha}(G)$ then $\pi_3^{\beta}(K_n) > \pi_3^{\beta}(G)$ for all $\alpha < \beta$.

CONCLUSION

For every $\alpha > 3$, sufficiently large *n* and every graph *G* on *n* vertices

 $\pi_3^{\alpha}(G) \leq \pi_3^{\alpha}(K_n)$

unless $n \equiv 1,3 \pmod{6}$. The exception is if $3 < \alpha < 4$, then $\pi_3^{\alpha}(G) \le \pi_3^{\alpha}(K_n^{=})$.

$$cost = 2\#K_2 + \alpha \#K_3$$

$$cost = 2\#K_2 + \alpha \#K_3$$

If $\alpha > 4$ then $\pi_3^{\alpha}(G) < \pi_3^{\alpha}(K_n)$ for all *n*. Let *G'* be obtained from *G* by adding an edge.

If $\alpha = 4$, then maximizers are

α Summary

THEOREM (BLUMENTHAL, L., PIKHURKO, PEHOVA, PFENDER, VOLEC) For every $\alpha \ge 0$ exists n_0 such that for all graphs G on $n > n_0$ the following cases hold.

- If $\alpha < 3$ then $\pi_3^{\alpha}(G) \leq \pi_3^{\alpha}(K_{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor})$.
- If $\alpha = 3$ then $\pi_3^{\alpha}(G) \leq \max\{\pi_3^{\alpha}(K_n), \pi_3^{\alpha}(K_{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor})\}$
- If $3 < \alpha < 4$, then $\pi_3^{\alpha}(G) \le \max\{\pi_3^{\alpha}(K_n), \pi_3^{\alpha}(K_n^{=})\}.$
- If $\alpha = 4$, then $\pi_3^{\alpha}(G) \le \max\{\pi_3^{\alpha}(K_n), \pi_3^{\alpha}(K_n^-), \pi_3^{\alpha}(K_n^-)\}.$
- If $4 < \alpha$, then $\pi_3^{\alpha}(G) \le \pi_3^{\alpha}(K_n)$.

Moreover, these are the only possible extremal examples.

 $cost = 2\#K_2 + \alpha \#K_3$

Assuming that each complete subgraph K_i has weight i - 1(i = 2, 3, ...), prove that every graph G on n vertices admits a partition into K_i s of total weight w(G) at most $n^2/4 = 0.25n^2$.

Assuming that each complete subgraph K_i has weight i - 1(i = 2, 3, ...), prove that every graph G on n vertices admits a partition into K_i s of total weight w(G) at most $n^2/4 = 0.25n^2$. Using only K_2 and K_3 gives $w(K_n) \approx n^2/3$.

Assuming that each complete subgraph K_i has weight i - 1(i = 2, 3, ...), prove that every graph G on n vertices admits a partition into K_i s of total weight w(G) at most $n^2/4 = 0.25n^2$. Using only K_2 and K_3 gives $w(K_n) \approx n^2/3$. Flag algebras using K_2 , K_3 , K_4 give upper bound of $0.27256n^2$.

Assuming that each complete subgraph K_i has weight i - 1(i = 2, 3, ...), prove that every graph G on n vertices admits a partition into K_i s of total weight w(G) at most $n^2/4 = 0.25n^2$. Using only K_2 and K_3 gives $w(K_n) \approx n^2/3$. Flag algebras using K_2, K_3, K_4 give upper bound of $0.27256n^2$. Flag algebras using $K_2, ..., K_7$ give upper bound of $0.27256n^2$.

WHY FLAG ALGEBRAS MIGHT STRUGGLE? Problem (Simpler)

Assuming that each complete subgraph K_i has weight i - 1(i = 2, 3, ...), prove that every K_4 -free graph G on n vertices admits a partition into K_i of total weight w(G) at most $n^2/4 = 0.25n^2$.

WHY FLAG ALGEBRAS MIGHT STRUGGLE? Problem (Simpler)

Assuming that each complete subgraph K_i has weight i - 1(i = 2, 3, ...), prove that every K_4 -free graph G on n vertices admits a partition into K_i of total weight w(G) at most $n^2/4 = 0.25n^2$.

Complete 3-partite graph $T_3(n)$ Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n))\approx \frac{2}{9}n^2\approx 0.22222n^2$$

 $w(G) := \#K_2 + 2\#K_3$

Complete 3-partite graph $T_3(n)$ Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n))\approx \frac{2}{9}n^2\approx 0.22222n^2$$

Flag algebras approach:

For every $X \in \binom{V}{3}$ take $\frac{w_f(G[X])}{\binom{n-2}{2}}$ decomposition and sum these.

$$w(G) := \#K_2 + 2\#K_3$$

Complete 3-partite graph $T_3(n)$ Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n))\approx \frac{2}{9}n^2\approx 0.22222n^2$$

Flag algebras approach: For every $X \in \binom{V}{3}$ take $\frac{w_f(G[X])}{\binom{n-2}{1}}$ decomposition and sum these. Expected cost of decomposition on 3 vertices

$$w(G) := \#K_2 + 2\#K_3$$

Complete 3-partite graph $T_3(n)$ Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n))\approx \frac{2}{9}n^2\approx 0.22222n^2$$

Flag algebras approach: For every $X \in {\binom{V}{3}}$ take $\frac{w_f(G[X])}{\binom{n-2}{1}}$ decomposition and sum these. Expected cost of decomposition on 3 vertices

$$0 \quad \frac{1}{9} \quad +1 \quad 0 \quad +2 \quad \frac{6}{9} \quad +2 \quad \frac{2}{9} = 16/9$$

$$w(G) := \#K_2 + 2\#K_3$$

Complete 3-partite graph $T_3(n)$ Since $T_3(n)$ is (almost) triangle decomposable,

$$w(T_3(n))\approx \frac{2}{9}n^2\approx 0.22222n^2$$

Flag algebras approach: For every $X \in \binom{V}{3}$ take $\frac{w_f(G[X])}{\binom{n-2}{1}}$ decomposition and sum these. Expected cost of decomposition on 3 vertices

Conclusion: Our formulation using FA is not strong enough.

 $w(G) := \#K_2 + 2\#K_3$

ONE MORE PROBLEM

PROBLEM (PYBER 1991)

Can the edge set of every *n*-vertex graph be covered with triangles of weight 3 and edges of weight 2 such that their total weight is at most $\lfloor \frac{n^2}{2} \rfloor$?

$$cost = 2\#K_2 + 3\#K_3$$

ONE MORE PROBLEM

PROBLEM (PYBER 1991)

Can the edge set of every *n*-vertex graph be covered with triangles of weight 3 and edges of weight 2 such that their total weight is at most $\lfloor \frac{n^2}{2} \rfloor$?

THEOREM (BLUMENTHAL, L., PIKHURKO, PEHOVA, PFENDER, VOLEC) For sufficiently large n,

$$\pi_{3}(G) \leq \begin{cases} \frac{n^{2}}{2} & \text{if } n \equiv 0, 2 \mod 6 \quad \dots \quad K_{\frac{n}{2}, \frac{n}{2}} \text{ and } K_{n}, \\ \frac{n^{2}-1}{2} & \text{if } n \equiv 1, 3, 5 \mod 6 \quad \dots \quad K_{\frac{n-1}{2}, \frac{n+1}{2}}, \\ \frac{n^{2}}{2}+1 & \text{if } n \equiv 4 \mod 6 \quad \dots \quad K_{n}. \end{cases}$$

n = 6k + 4, find a covering of $G = K_n$ of cost $\leq \frac{n^2}{2}$. Triangle decomposition: even degrees, |E(G)| divisible by 3

d(v) = 6k+3 $e(G) = 3(6k^2 + 7k + 2)$

n = 6k + 4, find a covering of $G = K_n$ of cost $\leq \frac{n^2}{2}$. Triangle decomposition: even degrees, |E(G)| divisible by 3

$$d(v) = 6k+2e(G) = 3(6k^2 + 7k + 2) - 3k - 2$$

n = 6k + 4, find a covering of $G = K_n$ of cost $\leq \frac{n^2}{2}$. Triangle decomposition: even degrees, |E(G)| divisible by 3

$$d(v) = 6k+2 \text{ or } 6k$$

$$e(G) = 3(6k^2 + 7k + 2) - 3k - 3$$

$$cost = \frac{n^2}{2} + 1$$

n = 6k + 4, find a covering of $G = K_n$ of cost $\leq \frac{n^2}{2}$. Triangle decomposition: even degrees, |E(G)| divisible by 3

$$d(v) = 6k+2 \text{ or } 6k$$

$$e(G) = 3(6k^2 + 7k + 2) - 3k - 3$$

$$cost = \frac{n^2}{2} + 1 - 4 + 3$$

n = 6k + 4, find a covering of $G = K_n$ of cost $\leq \frac{n^2}{2}$. Triangle decomposition: even degrees, |E(G)| divisible by 3

$$d(v) = 6k+2 \text{ or } 6k$$

$$e(G) = 3(6k^2 + 7k + 2) - 3k - 3$$

$$cost = \frac{n^2}{2} + 1 - 4 + 3$$

Thank you for your attention