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G is a near cubic plane graph, 3-edge-coloring of G
1) precoloring of half edges of G

ng(v) := # extensions of ¢ to G

Our goal is to “describe” vectors

(n6 (1), ng(¢2), nG(¥3), .. .)



ng(v) := # extensions of ¢ to G

For G with d half edges if ng(1)) # 0 then
[ (R) = [ 7HG) = [07H(B)| = d (mod 2).

X000
OV Vol ViR v
W X0 W
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NRRRR = NGGGG = NBBBB
Goal: Describe vectors

(NRRRR, NRRBB, NRBRB; NRBBR)-
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REPRESENTATION AS A LINEAR SUBSPACE

Let G4 be vectors (nRRRR, NRRBB, NRBRB, nRBBR) of all graphs with
4 half-edges.

1 4

/\ )/\\ \
K X3 €GiCL 2\ X3, 2\ 3, 2\
(2,2,2,7) (1,0,0, 1) (1,1,0 0) (0,1,1,0

Gq is in a linear combination of vectors corresponding to forests.



REPRESENTATION AS A LINEAR SUBSPACE

Let G4 be vectors (nRRRR, NRRBB, NRBRB, nRBBR) of all graphs with
4 half-edges.

1 4

/\ )/\\ \
K X3 €GiCL 2\ X3, 2\ 3, 2\
(2,2,2,7) (1,0,0, 1) (1,1,0 0) (0,1,1,0

Gq is in a linear combination of vectors corresponding to forests.
Can one do better and find a cone?

(linear combinations with non-negative coefficients preserve
positive coordinates )



BEST CONES WE FOUND!
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KEMPE CHAIN RELATIONS
Kempe chains are paths and cycles.

ng (1) := # extensions of ¢) to G

R B B R

NRRrRR = N & + nfqi_\\

nggpr = N & &~ + ”Ki\



Resulting system of equations

NRRRR
NRRBB
NRBRB

NRBBR

and all > 0.

N e
n =
n =
N e



Resulting system of equations
NRRRR = N A& & + nfi\
nrreg = M m +
nrere = M~ A +

ngegr = N~ & + n

q)
and all > 0. Solution:
> < 4 1>; <«
Go CCone | <05, 2 X, o< 3 2"
(1001) (1100) ( ) (0,1,1)
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LEMMA
The following claims are equivalent.

(a) Every planar cubic 2-edge-connected graph is
3-edge-colorable. (4CT)

(b) For every plane near-cubic graph G with 5
half-edges, if ng € ray(Rs 12), then ng = 0.

5,12
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Sketch (a) = (b)
Let G have n¢ € ray(Rs 12). Goal ng = 0.

Glue G with G5 to G as G & Cs.

G @ Gs is not 3-edge-colorable (Petersen graph).
By (a), G has a bridge.
G no precoloring extends so ng = 0
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LEMMA

Every plane near-cubic graph G with 5
half-edges satisties

ng € Cone (R571, ceey R5712) \ ray+(R5,12).

CoNJECTURE (DVORAK, L.)

Every plane near-cubic graph G with 5
half-edges satisfies
ng € Cone (R5’1, ceey R5’11).

THEOREM (DVORAK, L.)

5,12

Any counterexample to the conjecture has at least 29 vertices.



CONJECTURE (DVORAK, L.)

Every plane near-cubic graph G with 5 half-edges
satisfies ng € Cone (Rs1,...,R511) = Ks.

THEOREM (DVORAK, L.)

Any counterexample to the conjecture has at least 29 vertices.

Plan (other than checking all graphs on 28 vertices)

® Start with cones Kj, ..., K5 for graphs with up to 5 half-edges
without R5’12.
(We hope Gs C Ks.)

® Generate cones Kg and K7 for graphs with 6 and 7 half-edges by
combining rays from cones Ko, ..., K.
(Not necessarily G C Ks and G7 C K7.)

® Graphs with at most 28 vertices and 5 half-edges are covered by
Ks.



OPERATIONS ON RAYS
Cones Kj, ..., K7 defined by rays. Closed under the following:

37--74 2
R rotation R flip R
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OPERATIONS ON RAYS
Cones Kj, ..., K7 defined by rays. Closed under the following:

37--"4 2
R rotation R flip R

Ks has 102 rays, K7 has 22,605 rays
“Human readable proof” has 48GB and 100,405,321 lines.
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Suppose G’ with 5 half-edges is smallest such that ng ¢ Ks.
Then there is G with ng ¢ K7 looking like

We generate also some part of Kg to allow this cut.
Eventually gives |V/(G’)| > 29.
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CONJECTURE (DVORAK, L.)

Every plane near-cubic graph G with 5
half-edges satisfies
ng € Cone (R5’1, ey R5711).
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