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Motivation

Theorem (4CT)

Every planar graph is 4-colorable.

Problem
Is there a polynomial-time algorithm to decide if a precoloring of a
4-face extends? (all other faces are triangles)

# ≤ # + #

Not all precolorings extend.
Number of extensions satisfies some constraints.
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Dual

G is a near cubic plane graph, 3-edge-coloring of G
ψ precoloring of half edges of G

nG (ψ) := # extensions of ψ to G

Our goal is to “describe” vectors

(nG (ψ1), nG (ψ2), nG (ψ3), . . .)
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nG (ψ) := # extensions of ψ to G

For G with d half edges if nG (ψ) 6= 0 then
|ψ−1(R)| ≡ |ψ−1(G )| ≡ |ψ−1(B)| ≡ d (mod 2).

G

R R R R

R R B B

R B R B

R B B R

nRRRR = nGGGG = nBBBB
Goal: Describe vectors

(nRRRR , nRRBB , nRBRB , nRBBR).
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Reductions with fixed ψ

1

2

4

3

=

= 2 ·

= + −
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= + −

= + 2 −

= + 2 −

 + −


= +
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Representation as a linear subspace

Let G4 be vectors (nRRRR , nRRBB , nRBRB , nRBBR) of all graphs with
4 half-edges.

1

2 3

4

G

(?, ?, ?, ?)

∈ G4 ⊂ L



1

2 3

4

(1, 0, 0, 1)

,

1

2 3

4

(1, 1, 0, 0)

,

1

2 3

4

(0, 1, 1, 0)


Gd is in a linear combination of vectors corresponding to forests.

Can one do better and find a cone?
(linear combinations with non-negative coefficients preserve
positive coordinates )
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Best cones we found!

8



Kempe chain relations
Kempe chains are paths and cycles.

nG (ψ) := # extensions of ψ to G

R R R R

BBR RBBR R

nRRRR =

n + + + n
+

+

nRBBR = n − − + n
+

+
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Resulting system of equations

nRRRR = n + + + n
+

+

nRRBB = n + + + n −
−

nRBRB = n − − + n −
−

nRBBR = n − − + n
+

+

and all ≥ 0.

Solution:

G4 ⊆ Cone



1

2 3

4

(1, 0, 0, 1)

,

1

2 3

4

(1, 1, 0, 0)

,

1

2 3

4

(0, 1, 1, 0)

1

2 3

4

(0, 0, 1, 1)


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G2 ⊆ Cone

 1 2

 =: K2

G3 ⊆ Cone


1

2 3

 =: K3

G4 ⊆ Cone


1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
 =: K4
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Rays for G5 cone

R5,1

1

2

3 4

5

R5,2

1

2

3 4

5

R5,3

1

2

3 4

5

R5,4

1

2

3 4

5

R5,5

1

2

3 4

5

R5,6

1

2

3 4

5

R5,7

1

2

3 4

5

R5,8

1

2

3 4

5

R5,9

1

2

3 4

5

R5,10

1

2

3 4

5

R5,11

1

2

3 4

5

R5,12

1

2

3 4

5
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Lemma
The following claims are equivalent.

(a) Every planar cubic 2-edge-connected graph is
3-edge-colorable. (4CT)

(b) For every plane near-cubic graph G with 5
half-edges, if nG ∈ ray(R5,12), then nG = 0.

R5,12

1

2

3 4

5

0

R5,12

G5
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Sketch (a) =⇒ (b)
Let G have nG ∈ ray(R5,12). Goal nG = 0.

G

Glue G with C5 to G as G ⊕ C5.
G ⊕ C5 is not 3-edge-colorable (Petersen graph).
By (a), G has a bridge.
G no precoloring extends so nG = 0
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Sketch (b) =⇒ (a)
Let G be a smallest plane 2-edge-connected graph that is not
3-edge-colorable. Assume (b) and show G is 3-edge-colorable.

G

H

Find a 5-face C5, replace it by a path, now H is 3-edge-colorable.
G − C5 has a 3-edge-coloring.
Since nG−C5 6∈ ray(R5,12), nG−C5 is positive at entries of another
ray. Hence there is a 3-edge-coloring of G − C5 that extends to C5

(after checking cases).
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Lemma
Every plane near-cubic graph G with 5
half-edges satisfies
nG ∈ Cone (R5,1, . . . ,R5,12) \ ray+(R5,12).

0

R5,12

G5

Conjecture (Dvořák, L.)

Every plane near-cubic graph G with 5
half-edges satisfies
nG ∈ Cone (R5,1, . . . ,R5,11).

0

R5,12

G5

Theorem (Dvořák, L.)

Any counterexample to the conjecture has at least 29 vertices.
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Conjecture (Dvořák, L.)

Every plane near-cubic graph G with 5 half-edges
satisfies nG ∈ Cone (R5,1, . . . ,R5,11) := K5.

0

R5,12

G5

Theorem (Dvořák, L.)

Any counterexample to the conjecture has at least 29 vertices.

Plan (other than checking all graphs on 28 vertices)

• Start with cones K2, . . . ,K5 for graphs with up to 5 half-edges
without R5,12.
(We hope G5 ⊂ K5.)

• Generate cones K6 and K7 for graphs with 6 and 7 half-edges by
combining rays from cones K2, . . . ,K7.
(Not necessarily G6 ⊂ K6 and G7 ⊂ K7.)

• Graphs with at most 28 vertices and 5 half-edges are covered by
K5.
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Operations on rays

Cones K2, . . . ,K7 defined by rays. Closed under the following:

R

0

1

2 3

4

rotation R

0

1

2

3 4
flip R

0

12

3

4

R1

0

1

2 3

4

R2

0

1

2

3

4
glue of R1 and R2

0

1

2 3

4

5

K6 has 102 rays, K7 has 22,605 rays
“Human readable proof” has 48GB and 100,405,321 lines.
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Suppose G ′ with 5 half-edges is smallest such that nG ′ 6∈ K5.
Then there is G with nG 6∈ K7 looking like

We generate also some part of K8 to allow this cut.
Eventually gives |V (G ′)| ≥ 29.

19
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Conjecture (Dvořák, L.)

Every plane near-cubic graph G with 5
half-edges satisfies
nG ∈ Cone (R5,1, . . . ,R5,11).

0

R5,12

G5

Thank you for your attention.

R5,1

1

2

3 4

5

R5,6

1

2

3 4

5

R5,11

1

2

3 4

5

R5,12

1

2

3 4

5
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