Coloring Count Cones of Planar Graphs

Zdeněk Dvořák

Bernard Lidický

CanaDAM Vancouver, BC May 28, 2019

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

Not all precolorings extend.

Number of extensions satisfies some constraints.

THEOREM (4CT)

Every planar graph is 4-colorable.

PROBLEM

Is there a polynomial-time algorithm to decide if a precoloring of a 4-face extends? (all other faces are triangles)

Not all precolorings extend.

Number of extensions satisfies some constraints.

G is a *near cubic plane graph*, 3-edge-coloring of G ψ precoloring of half edges of G

 $n_G(\psi) := \#$ extensions of ψ to G

Our goal is to "describe" vectors

 $(n_G(\psi_1), n_G(\psi_2), n_G(\psi_3), \ldots)$

$n_G(\psi) := \#$ extensions of ψ to G

For G with d half edges if $n_G(\psi) \neq 0$ then $|\psi^{-1}(R)| \equiv |\psi^{-1}(G)| \equiv |\psi^{-1}(B)| \equiv d \pmod{2}.$

 $n_{RRRR} = n_{GGGG} = n_{BBBB}$ Goal: Describe vectors

 $(n_{RRR}, n_{RRBB}, n_{RBRB}, n_{RBBR}).$

Representation as a linear subspace

Let \mathcal{G}_4 be vectors $(n_{RRRR}, n_{RRBB}, n_{RBRB}, n_{RBBR})$ of all graphs with 4 half-edges.

 \mathcal{G}_d is in a linear combination of vectors corresponding to forests.

REPRESENTATION AS A LINEAR SUBSPACE

Let \mathcal{G}_4 be vectors $(n_{RRRR}, n_{RRBB}, n_{RBRB}, n_{RBBR})$ of all graphs with 4 half-edges.

 \mathcal{G}_d is in a linear combination of vectors corresponding to forests. Can one do better and find a cone? (linear combinations with non-negative coefficients preserve positive coordinates)

BEST CONES WE FOUND!

Kempe chains are paths and cycles.

 $n_{RRRR} =$

Kempe chains are paths and cycles.

 $n_{RRRR} = n \oplus \oplus +$

Kempe chains are paths and cycles.

$$n_{RRRR} = n \oplus \oplus + n \xrightarrow{\pm}$$

Kempe chains are paths and cycles.

Kempe chains are paths and cycles.

Resulting system of equations

$$n_{RRRR} = n \oplus \oplus + n \bigoplus_{\oplus}^{+}$$

$$n_{RRBB} = n \oplus \oplus + n \bigoplus_{\oplus}^{-}$$

$$n_{RBRB} = n \oplus \oplus + n \bigoplus_{\oplus}^{-}$$

$$n_{RBBR} = n \oplus \oplus + n \bigoplus_{\oplus}^{+}$$

and all ≥ 0 .

Resulting system of equations

$$n_{RRRR} = n \oplus \oplus + n \bigoplus^{+}$$

$$n_{RRBB} = n \oplus \oplus + n \bigoplus^{-}$$

$$n_{RBRB} = n \oplus \oplus + n \bigoplus^{-}$$

$$n_{RBBR} = n \oplus \oplus + n \bigoplus^{+}$$

$$n_{RBBR} = n \oplus \oplus + n \bigoplus^{+}$$

and all ≥ 0 . Solution:

Rays for \mathcal{G}_5 cone

3

 $R_{5,9}$

 $R_{5,11}$

 $R_{5,12}$

 $R_{5,10}$

LEMMA

The following claims are equivalent.

- (a) Every planar cubic 2-edge-connected graph is 3-edge-colorable. (4CT)
- (b) For every plane near-cubic graph G with 5 half-edges, if $n_G \in ray(R_{5,12})$, then $n_G = \mathbf{0}$.

LEMMA

The following claims are equivalent.

- (a) Every planar cubic 2-edge-connected graph is 3-edge-colorable. (4CT)
- (b) For every plane near-cubic graph G with 5 half-edges, if $n_G \in ray(R_{5,12})$, then $n_G = \mathbf{0}$.

Glue G with C_5 to G as $G \oplus C_5$.

Glue G with C_5 to G as $G \oplus C_5$.

Glue *G* with C_5 to *G* as $G \oplus C_5$. $G \oplus C_5$ is not 3-edge-colorable (Petersen graph).

Glue *G* with C_5 to *G* as $G \oplus C_5$. $G \oplus C_5$ is not 3-edge-colorable (Petersen graph). By (*a*), *G* has a bridge. *G* no precoloring extends so $n_G = 0$

Find a 5-face C_5

Find a 5-face C_5 , replace it by a path

Find a 5-face C_5 , replace it by a path, now *H* is 3-edge-colorable.

Find a 5-face C_5 , replace it by a path, now H is 3-edge-colorable. $G - C_5$ has a 3-edge-coloring.

Find a 5-face C_5 , replace it by a path, now H is 3-edge-colorable. $G - C_5$ has a 3-edge-coloring.

Since $n_{G-C_5} \notin ray(R_{5,12})$, n_{G-C_5} is positive at entries of another ray. Hence there is a 3-edge-coloring of $G - C_5$ that extends to C_5 (after checking cases).

Find a 5-face C_5 , replace it by a path, now H is 3-edge-colorable. $G - C_5$ has a 3-edge-coloring.

Since $n_{G-C_5} \notin ray(R_{5,12})$, n_{G-C_5} is positive at entries of another ray. Hence there is a 3-edge-coloring of $G - C_5$ that extends to C_5 (after checking cases).

Lemma

Every plane near-cubic graph G with 5 half-edges satisfies $n_G \in Cone(R_{5,1}, ..., R_{5,12}) \setminus ray^+(R_{5,12}).$

Conjecture (Dvořák, L.)

Every plane near-cubic graph G with 5 half-edges satisfies $n_G \in Cone(R_{5,1}, \ldots, R_{5,11}).$

THEOREM (DVOŘÁK, L.)

Any counterexample to the conjecture has at least 29 vertices.

CONJECTURE (DVOŘÁK, L.) Every plane near-cubic graph *G* with 5 half-edges

Every plane near-cubic graph G with 5 half-edges satisfies $n_G \in Cone(R_{5,1}, \ldots, R_{5,11}) := K_5$.

THEOREM (DVOŘÁK, L.)

Any counterexample to the conjecture has at least 29 vertices.

Plan (other than checking all graphs on 28 vertices)

- Start with cones K₂,..., K₅ for graphs with up to 5 half-edges without R_{5,12}. (We hope G₅ ⊂ K₅.)
- Generate cones K₆ and K₇ for graphs with 6 and 7 half-edges by combining rays from cones K₂,..., K₇. (Not necessarily G₆ ⊂ K₆ and G₇ ⊂ K₇.)
- Graphs with at most 28 vertices and 5 half-edges are covered by κ_5 .

OPERATIONS ON RAYS

Cones K_2, \ldots, K_7 defined by rays. Closed under the following:

OPERATIONS ON RAYS

Cones K_2, \ldots, K_7 defined by rays. Closed under the following:

OPERATIONS ON RAYS

Cones K_2, \ldots, K_7 defined by rays. Closed under the following:

 K_6 has 102 rays, K_7 has 22,605 rays "Human readable proof" has 48GB and 100,405,321 lines.

Suppose G' with 5 half-edges is smallest such that $n_{G'} \notin K_5$. Then there is G with $n_G \notin K_7$ looking like

We generate also some part of K_8 to allow this cut. Eventually gives $|V(G')| \ge 29$.

Conjecture (Dvořák, L.)

Every plane near-cubic graph G with 5 half-edges satisfies $n_G \in Cone(R_{5,1}, \ldots, R_{5,11}).$

Conjecture (Dvořák, L.)

Every plane near-cubic graph G with 5 half-edges satisfies $n_G \in Cone(R_{5,1}, \ldots, R_{5,11}).$

Thank you for your attention.

