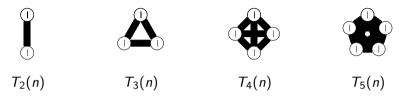
ℓ_2 -norm in Turán Type Problems

József Balogh Felix Christian Clemen Bernard Lidický

AMS Sectional Meeting #1182 Oct 22, 2022

TURÁN'S THEOREM

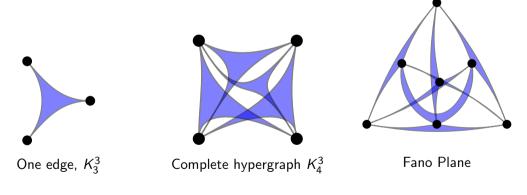
ex(n, F) := Maximum number edges in an F-free graph on n vertices.



THEOREM (MANTEL (1907)) $ex(n, K_3) = |E(T_2(n))|$. Moreover, $T_2(n)$ is the unique extremal graph. THEOREM (TURÁN (1941)) $ex(n, K_{r+1}) = |E(T_r(n))|$ for $r \ge 3$, and $T_r(n)$ is the unique extremal graph. THEOREM (ERDŐS-STONE (1946), ERDŐS-SIMONOVITS (1966)) $ex(n, F) = \left(1 - \frac{1}{\chi(F) - 1}\right) \frac{n^2}{2} + o(n^2).$

Hypergraph Setting

3-uniform hypergraphs have triples of vertices as edges.



Turán's Tetrahedron problem: Determine $ex(n, K_4^3)$

\$500 reward by Erdős

TURÁN'S TETRAHEDRON PROBLEM

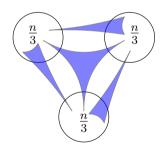
Determine $ex(n, K_4^3)$ Asymptotic setting:

$$\pi(K_4^3) = \lim_{n \to \infty} \exp(n, K_4^3) / \binom{n}{3}$$

 $\begin{array}{c} & & \\ & & \\ & & \\ & \\ &$

THEOREM (KOSTOCHKA 1982, BROWN 1983, FON-DER-FLAASS 1988, FROHMADE 2008) $\pi(K_4^3) \geq 5/9$

At least $6^{n/3}$ extremal hypergraphs



UPPER BOUND

Construction $\pi(K_4^3) \ge 5/9$

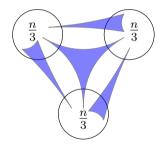
OBSERVATION

Every 4 vertices miss at least 1 edge $\pi(K_4^3) \leq 3/4$

```
THEOREM (BABER 2012)
Flag algebras \pi(K_4^3) \leq 0.5615
```

THEOREM (RAZBOROV 2010) Flag algebras $\pi(K_4^3, \text{few other graphs}) = 5/9$

If 3-partite and all cross edges present $\pi(K_4^3) \leq 0.5583$



CODEGREE

For a hypergraph G degree of $v : d(v) := |\{e \in E(G) : v \in e\}|$ co-degree of $u, v : d(u, v) := |\{e \in E(G) : u, v \in e\}|$

$$\sum_{u,v \in V} d(u,v) = 3|E(G)|$$

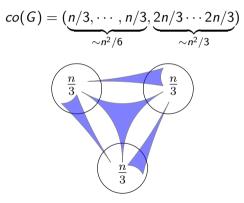
co-degree vector $co(G) = (d(v_1, v_2), d(v_1, v_3), \dots, d(v_{n-1}, v_n))$

 ℓ_1 -norm of $co(G) = ||co(G)||_1 = 3|E(G)|$

Turán problem is equivalent to maximizing $||co(G)||_1$. How about ℓ_2 -norm of co(G)?

Why not degree vector?

By symmetrization, most extremal hypergraphs are almost vertex regular.



PROBLEM

For *n*-vertex hypergraph *G co-degree* of $u, v : d(u, v) := |\{e \in E(G) : u, v \in e\}|$ *co-degree vector* $co(G) = (d(v_1, v_2), d(v_1, v_3), \dots, d(v_{n-1}, v_n))$ $co_2(G) = \sum d(u, v)^2$

PROBLEM

Determine $exco_2(n, F) := max\{co_2(G) : G \text{ is } n\text{-vertex and } F\text{-free}\}$

Related concepts for *F*-free graphs

- uniform Turán density $\pi_u(F)$
- max min co-degree $\pi_2(F)$
- max min positive co-degree $\gamma^+(F)$

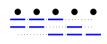
$$exco_2(n, F) := max\{co_2(G) = \sum_{uv} d(u, v)^2 : G \text{ is } n \text{-vertex and } F \text{-free}\}$$

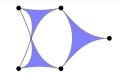
• scaled limit exists:
$$\lim_{n \to \infty} \frac{\exp(n, F)}{\binom{n}{2}n^2} =: \sigma(F)$$

• bounded by Turán density: $\pi(F)^2 \leq \sigma(F) \leq \pi(F)$

• jump from 0:
$$\sigma(F) = 0$$
 or $\sigma(F) \geq 2/27$

• supersaturation $\forall \varepsilon > 0 \exists \delta > 0$ if *n*-vertex *G* has $co_2(G) > exco_2(n, F) + \varepsilon n^4$ then *G* contains at least $\delta \binom{n}{|F|}$ copies of *F* $F_5 = \{123, 124, 345\}$

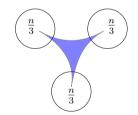




THEOREM (BALOGH, CLEMEN, L. 2022)

 $\sigma(F_5)=2/9$ with stability and unique extremal example for large n

 $\begin{aligned} \pi(F_5) &= 2/9 \text{ Frankl-Füredi (1983)} \\ \pi_u(F_5) &= 0 \text{ Reiher, Rödl, Schacht (2018)} \\ \pi_2(F_5) &= 0 \\ \gamma^+(F_5) &= 1/3 \text{ Halfpap, Lemons, Palmer, 4:00pm room 215} \end{aligned}$



FLAG ALGEBRAS

Tool for exploring identities on densities of small graphs in large graphs (graph limits). $d(H, G) := (\# \text{of subgraphs of } G \text{ isomorphic to } H) / {|G| \choose |H|}$ d(H, G) depicted as H

 $co_2(G)$ is eqivalent to

$$\frac{1}{\binom{n}{2}} \sum_{uv} \frac{1}{u^{v}} = \frac{1}{6} + \frac{1}{2} + o(1)$$

Let \mathcal{G}_n be *F*-free 3-uniform hypergraphs on *n* vertices.

$$\sigma(F) := \lim_{n \to \infty} \max_{G \in \mathcal{G}_n} \frac{1}{6} + \frac{1}{2} + \frac{1}{2}$$

FLAG ALGEBRAS FOR OTHER VARIANTS

min codegree at least z Falgas-Ravry, Pikhurko, Vaughan, Volec (2017) $\left[\left(\begin{array}{c} \bullet \\ 1 & 2 \end{array} \right) \times H \right]_{1,2} \ge 0. \quad \left[\begin{array}{c} \bullet \\ 1 & 2 \end{array} \right]_{1,2} \ge 0. \quad \left[\begin{array}{c} \bullet \\ 1 & 2 \end{array} \right]_{1,2} \ge 0.$

Uniform density at least d formulation by Glebov, Král', Volec (2016)

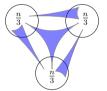
$$\left[\left((1-d) \left| \begin{array}{c} 1-d \right| \left| \begin{array}{c} -d \right| \left| \begin{array}{c} 1-d \right| \left| \left| 1-d \right| \left| \left| \left| \begin{array}{c} 1-d \right| \left| \left| 1-d \right| \left| \left| 1-d \right| \left| \left| 1-d \right| \left| \left| 1-d \right| \left| 1-d | \left| 1-d \right| \left| 1-d | 1-d | \left| 1-d | 1-d | \left| 1-d | 1-d |$$

 K_4^3

Let \mathcal{G}_n be *F*-free 3-uniform hypergraphs on *n* vertices.

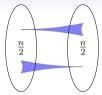
$$\sigma(F) := \lim_{n \to \infty} \max_{G \in \mathcal{G}_n} \frac{1}{6} + \frac{1}{2} + \frac{1}{2}$$

THEOREM (BALOGH, CLEMEN, L. 2022) $\sigma(K_4^3) = \frac{1}{3}$ with stability

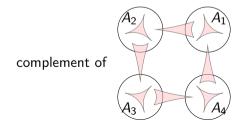


 $5/9 \le \pi(K_4^3) \le 0.5615$ with many extremal constructions $1/2 \le \pi_u(K_4^3) \le 0.531$ Rödl (1986) $1/2 \le \pi_2(K_4^3) \le 0.529$ Czygrinow, Nagle (2001) $1/2 \le \gamma^+(K_4^3) \le 0.55$ Halfpap, Lemons, Palmer, today 4:00pm room 215

THEOREM (BALOGH, CLEMEN, L. 2022) $\sigma(K_5^3) = \frac{5}{8}$ including stability

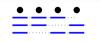


 $3/4 \le \pi(K_5^3) \le 0.769533$ $\frac{2}{3} \le \pi_2(K_5^3) \le 0.74$ LB by Falgas-Ravry (2013) and Lo and Markström (2014) $2/3 \le \pi_u(K_5^3) \le 0.758$

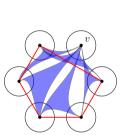


 K_{4}^{3-}

$${\cal K}_4^{3-}={\cal F}_4=\{123,124,134\}$$



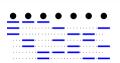
$$4/43 \le \sigma(K_4^{3-}) \le 4/43 + 0.00004$$



 $2/7 \le \pi(K_4^{3-}) \le 2/7 + 0.00117$ $\pi_u(K_4^{3-}) = 1/4$ Glebov, Král', Volec (2016), Reiher, Rödl, Schacht (2018) $\pi_2(K_4^{3-}) = 1/4$ Falgas-Ravry, Pikhurko, Vaughan, Volec (2017) $\gamma^+(K_4^{3-}) = 1/3$ Halfpap, Lemons, Palmer, today 4:00pm room 215

FANO PLANE

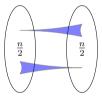
 $\mathbb{F} = \{123, 345, 156, 246, 147, 257, 367\}$



 $\pi(\mathbb{F}) = 3/4$ Sós 1976, de Caen Füredi (2000) $\pi_u(\mathbb{F}) = 0$ Reiher, Rödl, Schacht (2018) $\pi_2(\mathbb{F}) = 1/2$ Mubayi (2005)

 $\gamma^+(\mathbb{F}) = 2/3$ Halfpap, Lemons, Palmer, today 4:00pm room 215

How about $\sigma(\mathbb{F})$? Too large for flag algebras.



	(77) .	(77) -	((**)	(77) -	(77)	(**) -	(7 7)
Н	$\pi(H) \ge$	$\pi(H) \leq$	$\sigma(H) \ge$	$\sigma(H) \leq$	$\pi_2(H) \ge$	$\pi_2(H) \leq$	$\pi_u(H) \ge$	$\pi_u(H) \leq$
K_4^3	5/9 [67]	0.5615 [1]	1/3 [3]	1/3~[3]	1/2~[56]	0.529	1/2	0.529
K_5^3	3/4 [62, 67]	0.7696 [68]	5/8 [3]	5/8 [3]	2/3 [24, 50]	0.74	2/3	0.758
K_6^3	$0.84 \ [62, 67]$	0.8584 [68]	0.7348 [3]	0.7536	3/4 [24, 50]	0.838	3/4	0.853
$F_{3,2}$	4/9 [54]	4/9 [35]	1/4	$1/4 + 10^{-9}$	1/3~[25]	1/3~[25]	0	0 [60]
$F_{3,3}$	3/4 [54]	3/4 [54]	5/8 [3]	5/8 [3]	1/2	0.604	1/4	0.605
F_5	2/9 [5]	2/9 [30]	2/27	2/27	0	0	0	0 [60]
F	3/4 [65]	3/4 [16]	5/8	3/4	1/2~[53]	1/2 [53]	0	0 [60]
K_4^{3-}	2/7 [31]	0.28689 [68]	4/43	0.09307	1/4~[56]	1/4 [26]	1/4 [39]	1/4 [39]
$K_4^{3-}, F_{3,2}, C_5$	12/49 [27]	12/49~[27]	2/27	2/27	1/12	0.186	0	0 [60]
$K_4^{3-}, F_{3,2}$	5/18 [27]	5/18 [27]	5/54	5/54	1/12	0.202	0	0 [60]
K_{4}^{3-}, C_{5}	1/4 [27]	$0.25108\ [27]$	1/13	0.07695	1/12	0.204	0	0.251
$F_{3,2}, J_4$	3/8 [27]	3/8 [27]	3/16	3/16	1/12	0.274	0	0 [60]
$F_{3,2}, J_5$	3/8 [27]	3/8 [27]	3/16	3/16	1/12	0.28	0	0 [60]
J_4	1/2 [6]	0.50409 [68]	0.28	0.2808	1/4	0.473	1/4	0.49
J_5	1/2 [6]	0.64475	0.28	0.44275	1/4	0.613	1/4	0.631
C_5	$2\sqrt{3}-3$ [54]	$0.46829\ [68]$	0.25194	0.25311	1/3	0.3993	1/27	0.402
C_5^-	1/4 [54]	0.25074 [68]	1/13	0.07726	0	0.136	0	0 [60]
$K_5^=$	0.58656	0.60962	0.35794	0.38873	1/2	0.569	1/2	0.567
$K_5^<$	5/9	0.57705	1/3	0.34022	1/2	0.560	1/2	0.568
K_5^-	0.58656	0.64209	0.35794	0.41962	1/2	0.621	1/2	0.626

CODEGREE SQUARED

Flag algebras work

for small graphs

and exactness?

https://timothyandersondesign.com/