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RAMSEY AND TURAN

THEOREM (RAMSEY (1930))

For every r, s exists R(r,s) such that every graph on R(r, s) vertices contains K, or K.

THEOREM (TURAN (1941))

Kq-free graph on n vertices maximizing the number of edges is Tq—1(
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RAMSEY-TURAN
PROBLEM

What K,-free graph on n vertices maximizing the number of edges while having low
independence number?

T2(n) T3(n)



PROBLEM
What K,-free graph on n vertices is maximizing the number of edges while having low
p-independence number?

p-independence number of a graph G is
ap(G) :=max{|U] : U C V(G) and G[U] is K,-free}

Note az(G) = a(G)

Ramsey-Turan number

RTy(n, Kg, m) := max{e(G) : G is Ks-free, v(G) = n,ap(G) < m,}
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PROBLEM
What K,-free graph on n vertices is maximizing the number of edges while having low
p-independence number?

p-independence number of a graph G is
ap(G) :=max{|U] : U C V(G) and G[U] is K,-free}

Note az(G) = a(G)

as(G) + 1
Ramsey-Turan number

RTy(n, Kg, m) := max{e(G) : G is Ks-free, v(G) = n,ap(G) < m,}



p-independence number of a graph G is

ap(G) :=max{|U|: U C V(G) and G[U] is K,-free}.

Ramsey-Turan number

RTy(n, Kq, m) := max{e(G) : G is Ks-free, v(G) = n,ap(G) < m,}

Asymptotic version
RT K,
Qp(q) = lim lim —p(n, q,gn)

e—0 n—o0 (g)



CONJECTURE (ERDOS, HAJNAL, SIMONOVITS, SOS AND SZEMEREDI '94)

The asymptotic extremal graph G for pp(q) has the following structure. Let
q=pt+r+2, wheret € Nandr € Z,. Then there is a partition
V(G) = VoU Vi U---U V; such that

1
® e(G[Vj]) =o(n?) forall 0 < i<t
* dg(Vo, V1) = %1 —o(1), and degrees
in G[Vo, V4] differ by o(n); 1 1 1
® dg(V;,V;) =1—o0(1) for all pairs
{i.j} #{0,1}. =l
In particular

—1)(2p—r—1)+r+1
op(q) = 05(q) = (tt(z);g—prfl)+)r11+
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CONJECTURE (ERDOS, HAJNAL, SIMONOVITS, SOS AND SZEMEREDI '94)

The asymptotic extremal graph G for pp(q) has the following structure. Let
q=pt+r+2, wheret € Nandr € Z,. Then there is a partition
V(G) = VoU Vi U---U V; such that

® ¢(G[V]) = o(n?) forall 0 < i<t K, K,

* dg(Vo, V1) = %1 —o(1), and degrees
in G[Vo, V4] differ by o(n); 1 1 1

® dg(V;,V;) =1—o0(1) for all pairs
{i.j} #{0,1}.

In particular (1 )
- . (t=1)(2p—r—1)+r+1
0p(q) = 0p(q) = tp—r—1)+r+1

Liu, Reiher, Sharifzadeh, and Staden p16(22) = 1/6 > 5/32 = 07¢(22)




CONJECTURED CONSTRUCTION

1 1
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FIGURE: Sketch of a construction for p5(12) > 13.

o=

Liu, Reiher, Sharifzadeh, and Staden
Let g = pt + £+ 1. Then for all 0 < £ < p/2: 05(q) > 05(q)



CONJECTURED CONSTRUCTION

1 1

1 1

1
5

FIGURE: Sketch of a construction for p5(12) > 13.

o=

Liu, Reiher, Sharifzadeh, and Staden
Let g = pt + £+ 1. Then for all 0 < £ < p/2: 05(q) > 05(q)



CONJECTURED CONSTRUCTION

1 1

1 1

O O

FIGURE: Sketch of a construction for p5(12) > 13.

o=

Liu, Reiher, Sharifzadeh, and Staden
Let g = pt + £+ 1. Then for all 0 < £ < p/2: 05(q) > 05(q)



CONJECTURED CONSTRUCTION

Liu, Reiher, Sharifzadeh, and Staden
Let g = pt + £+ 1. Then for all 0 < £ < p/2: 05(q) > 05(q)



OUR WORK

We calculate upper bound on g,(q) for some small values of p and q.

RT K
0p(q) = lim lim —p(n, a:€N)

e—0 n—o0 (’27) ’

Plan
® Take large Ky-free n-vertex graph G where every
en vertices contain K.
e Apply Szemerédi Regularity Lemma @ 0.8 @
e Get reduced h R
et reduced grap N O
® Note R is edge-weighted graph
® Show R does not contain certain subgraphs 0.5 @
e Compute an upper bound on edge density in R G
(Weighted Turan Problem)

® |t gives an upper bound on the edges in G

X3 (05 X
0.2 :
X 0.8
X 05 Xx
R



WEIGHTED TURAN PROBLEMS
An edge weighting w is w : E(G) — [0, 1].

A weighted clique is (r, f)

fi <[;]> —[0,1]

(G, w) contains (r,f) if exists injective

¢: [r1 = V(G)  #(i)e() € E(G) and w(g(i)o(j)) > (i)



ASYMPTOTIC PROBLEM

An edge weighting w is w : E(G) — [0, 1].

w(G) ;:% > wle).
ecE(G)

Asymptotic Turan problem:

d(Ky) = lim max e(G)/ <;’>

n—00|V(G)|=n, G is Kq-free
Set of weighted cliques F

d =1 G
(f) anw \V(G)|:TaGXis F-free W( )

10



WEIGHTED TURAN
A Turan edge weighting wr : E(G) — [0, 1].

wr(e) == 20— 1) where r = argmax,{e is in k-clique in G}

wr(G) = % Z wr(e).

ecE(G)

OBSERVATION
For every k > 2

lim wr(Tk(n)) ==

n—00 2

since e(Tk(n)) = =2 (3).

r

THEOREM (BRADAC; MALEC, TOMPKINS)
For every G holds wr(G) < 1.



KEY LEMMA

m
g(A) := max {uTAu lu= (ul,...,um)T,Z ui=1u; > 0} :
i=1

A'is dense if for every i € [m], A;j =0 and A’ obtained from A by removing ith row
and column satisfies g(A") < g(A).

LEMMA (L1u, REIHER, SHARIFZADEH, AND STADEN 20214 )

Let m € N and let A = (ajj) be a dense symmetric m x m matrix with nonnegative
entries and let u be optimal for A. Then

1. Ais positive, that is, aj > 0 forevery 1 <i < j<m,
2. uj > 0 for every i € [m],
3. Z,G[m]\{j} ajjuj = g(A), for every j € [m].



THEOREM (BRADAC)
For every G holds wr(G) < 1.
Proof: Let V(G) = vi,...,v,. Define A e R"™"

wr(vi,y) if (vi.y) € E(G)
Aij= :
0 otherwise

for x = (1/n,...,1/n), we obtain

N =

2
wr(G) = = Z wr(e) = xTAx < g(A) <
ecE(G)

A’ principal submatrix of A maximizing g(A’), pick minimal by inclusion
A’ is dense, let K C V(G) correspond to A'.

K induces a clique by Lemma

aij < wr(|K])

8(A) < g(A) < Xlick Ui Xjek jri tiwt (k) = wr(k) X jes ui(l — uj) =
wr(k) (1= Yiexuf) Swr(k)(1-§) =3



OTHER WEIGHTS
A clique weighting cw : N — [0, 1].

w(e) := cw(r) where r = argmax,{e is in k-clique in G}

w(G) = % Z w(e)

ecE(G)

THEOREM
Let cw be a clique weighting. Under mild assumptions, if w(G) is close maximum,
then G is close T,(n) for some r.



OTHER WEIGHTS

A clique weighting cw : N — [0, 1],

w(e) := cw(r) where r = argmax,{e is in k-clique in G}

W(6) 1= 3 Ve () W(e)

In Ks-free graphs, cw(2) =1
If ew(3) < 3/4 and cw(4) < 2/3, then
T2(n) is extremal.

If ew(3) > 3/4 and cw(3) >
then T3(n) is extremal.

If ew(4) >2/3 and ew(3) <
then T4(n) is extremal.

ool©

cw(4),

[ee][te]

cw(4),

cw(3)

W
[y



BACK TO RAMSEY-TURAN

Ramsey-Turan number

RTy(n, Kq, m) := max{e(G) : G is Kq-free,v(G) = n,ap(G) < m,}

Asymptotic version
RT,(n, Kq,en
Qp(q) = lim lim —( A L )

e—0 n—o0 (g)
02(2t+1) = t;tl forall t>1, and 02(2t) = 2; :2
pg| 5|6 |7[8]9|10[11]12]13]14
3 |H|S|E|H E|H E|H
4 |0 |H|[S|S|E|H| E | H
5 |0/0|S|S|S|S|E|«
6 |0] 0|0 |S|S|S|S|*|E]|x




OUR ADDITION

RTy(n, Kq, m) := max{e(G) : G is K4-free, v(G) = n,ap(G) < m,}

Asymptotic version
RT,(n, Kq,en
gp(q) = lim lim —( AL )

e—0 n—00 (g)

3t—5

t—1
02(2t+1) = — forall t>1, and 02(2t) = for all t > 2.

3t—-2

THEOREM
The following bounds ho/d 04(11) < %, 05(12) < 19, 06(12) < 3, and 06(14) < £2.
In particular, 05(12) = 13.

Translated to weighted Turan problems solved using flag algebras.



PROOF SKETCH FOR g5(12) < 12,

19

Large Kip-free n-vertex graph G
where every en vertices contain Ks.

Apply Szemerédi Regularity Lemma
Get reduced graph R
Note R is edge-weighted graph

Show R does not contain certain
subgraphs

Compute an upper bound on edge
density in R

(Weighted Turan Problem)

It gives an upper bound on the edges
in G

070

021 05

020

G

X305 X2

x 05 Xx



FORBIDDEN CONFIGURATION ON R

en vertices contain Ks, find Ko if R contains weighted triangle vy vovs.
Embedding lemma by Erd6s, Hajnal, Simonovits, Sés, Szemeredi, see also Liu et. al.

1
5
Vi



ALL FORBIDDEN CONFIGURATIONS FOR p5(12) < 12

4
g'f‘é‘

3

g te

5
Vo V3 v2 V3
1 1 3 1
§+€ g‘f’f‘: 5++€

20



FLAG ALGEBRAS

Seminal paper:

Razborov, Flag Algebras, Journal of Symbolic Logic 72
(2007), 1239-1282.

David P. Robbins Prize by AMS for Razborov in 2013 over
300 citations (on google)

EXAMPLE
If density of edges is p, what is the minimum density of triangles?
® Designed to attack extremal problems.

e Works well if constraints as well as desired value can be computed by checking small
subgraphs (or average over small subgraphs).

® The results are for the limit as graphs get very large.

21



WEIGHTED PROBLEM USING FLAG ALGEBRAS

® No such thing as weighted flags

® Flag algebras allow coloring edges from a finite set of colors

® Make density ranges as colors

name/color | density interval | rule

1 [0,¢) no embedding
2 [,1/5+¢) any 1 vertex
3 [1/5+4¢,1/24¢) | some 2 vertices Vo
4 [1/24¢€,3/54¢) | any 2 vertices or some 3 vertices
5 [3/5+¢,4/5+¢€) | some 4 vertices :
6 [4/5 +¢,1] any 5 vertices

Flag result

1

5

2 5 5

1 3 4 10
-0+ -3+ -4+ -5+ < *—Fo(l)

19

+ée

Vi



FLAG ALGEBRAS

- T‘

* Nothing in these slides is endorsed by Razborov except this picture

J
Evdos's m»«d@d

99



EXAMPLE EXTREMAL PROBLEM

THEOREM (MANTEL 1907)

Every n-vertex triangle-free graph contains at most %nz edges.

PROBLEM

Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).
® |ocal condition and global parameter
® threshold

® bound and extremal example

241



EXAMPLE EXTREMAL PROBLEM

THEOREM (MANTEL 1907)

Every n-vertex triangle-free graph contains at most %nz edges.

PROBLEM

Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).
® |ocal condition and global parameter
® threshold
® bound and extremal example

We will use colors for edges and non-edges.

241



FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red
; ; triangle, i.e. #\_//(g)

95
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FLAG ALGEBRAS DEFINITIONS

Let G be a 2-edge-colored complete graph on n vertices.

Flags

\V4
4
/

The probability that three random vertices in G span a red

triangle, i.e. #\_f/ (g) )

The probability that three random vertices in G span a graph
isomorphic to a triangle with one red and two blue edges.

The probability that a random vertex other than v is
connected to v by a red edge, i.e., the red degree of v
divided by n — 1.

1 2

S CR;

Type - flag induced by labeled vertices

D



FLAG ALGEBRAS IDENTITIES

Let G be a 2-edge-colored complete graph on n vertices.

VV+V+V -t

Same kind as

[+]-

26



FLAG ALGEBRAS IDENTITIES

Let G be a 2-edge-colored complete graph on n vertices.

| VIV VY

Expanded version:

"(1)-+ ([ N)-+(\7) (]

) ()
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Let G be a 2-edge-colored complete graph on n vertices.
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FLAG ALGEBRAS IDENTITIES

Let G be a 2-edge-colored complete graph on n vertices.

\M XE/Z\/H V+V+o(l)
A A A VAT R AVATAVARL

?
v : The probability of choosing two different vertices . ..
v

\3 y X l:/v: The probability that choosing two vertices w1, up other than v gives red

vuy and blue vuy.

o(1) as |V(G)| — oo (will be omitted on next slides)

IR



FLAG ALGEBRAS IDENTITIES

Let G be a 2-edge-colored complete graph on n vertices.

B
-
<
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FLAG ALGEBRAS IDENTITIES

Let G be a 2-edge-colored complete graph on n vertices.

i’\_/': rv<16)| VEEV%G)VU
V= rV(lc)\ VEEV(:G)VU



FLAG ALGEBRAS IDENTITIES

Let G be a 2-edge-colored complete graph on n vertices.

<1°°<T



IDENTITIES SUMMARY




FLAG ALGEBRAS - EXAMPLE

THEOREM (MANTEL 1907)
Every triangle-free graph contains at most 1n? ~ 1 (1) edges.
Assume edges are red and non-edges are blue.

21
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THEOREM (MANTEL 1907)
Every triangle-free graph contains at most %n2
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Assume v = 0. (We want to conclude I <1i)

Q
NI
—
NS
~—

3

3

[}
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FLAG ALGEBRAS - EXAMPLE

THEOREM (MANTEL 1907)
Every triangle-free graph contains at most %n2
Assume edges are red and non-edges are blue.

Assume v = 0. (We want to conclude I <1i)
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FLAG ALGEBRAS - EXAMPLE

THEOREM (MANTEL 1907)
Every triangle-free graph contains at most %n2

%
N[
—~
NS
—

3

K

0

Assume edges are red and non-edges are blue.

Assume v = 0. (We want to conclude I <1i)

<
<

IN

21



EXAMPLE - MANTEL’S THEOREM

Assume v = 0. (We want to conclude I <3.)
)
1 2
—oN/ 1IN/ 2K/
I * 3 * 3

N[ =

29



EXAMPLE - MANTEL’S THEOREM

Assume v = 0. (We want to conclude I <3.)
)
1 2
—oN/ 1IN/ 2K/
I * 3 * 3

Idea: find c1, ¢, c3 € R such that for every graph G

N[ =

0< clv + czv + C3v+o(1).
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FLAG ALGEBRAS - CANDIDATES FOR ¢, G, C3

< i [c) > = 0 (matrix is positive semidefinite)
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FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

s(L)Gol L)
a?&%*"\?“\?

—aV+a+2c +b+2CV+bv
- 3 3

S|
0w

—_

%Q = [V{G) Lvev(e) Q Q V(e 2vev(c) Q

c b

a c . .
< ) = 0 (matrix is positive se
5 3 2
3 = |v )| £«veV(G)




FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

%v |V(G)| 2vev(6) V v

G)| 2_veV(G) g

c b

a c . .
< ) = 0 (matrix is positive se
5 3 2
3 = |v )| £«veV(G)




FLAG ALGEBRAS - CANDIDATES FOR ¢1, G, &3

( i Z > = 0 (matrix is positive semidefinite)
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FLAG ALGEBRAS - USING c¢i, Gy, C3

VAN
Va

< i Z > = 0 (matrix is positive semidefinite)
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FLAG ALGEBRAS - USING c¢i, Gy, C3

1 2c 2 2
I gmax{a, —|—a3—|— C, +b3+ C}<v+

< i Z > = 0 (matrix is positive semidefinite)

24



FLAG ALGEBRAS - USING c¢i, Gy, C3

1 2c 2 2
I gmax{a, —|—a3—|— C, +b3+ C}<v+

Try
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FLAG ALGEBRAS - USING c¢i, Gy, C3

1 2c 2 2
I gmax{a, —|—a3—|— C, +b3+ C}<v+

Try

It gives

24



FLAG ALGEBRAS - OPTIMIZING a, b, ¢

I { 1+a+2c 2+b+2c}
< max\ a,

3 ’ 3
Minimize d
subjectto a<d
Itat2c ~ 4
3 —
(SDP) 2:bi2c _ g
c b

(SDP) can be solved on computers using CSDP or SDPA.
Rounding may be needed for exact results.

25



How TO FIND EXTREMAL CONSTRUCTIONS?
We got

111 1
<maxs =, =, =0 = —=.
26 2 2

which is

2A



HOwW TO FIND EXTREMAL CONSTRUCTIONS?

| VIV Y
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HOwW TO FIND EXTREMAL CONSTRUCTIONS?

| VIV Y
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HOwW TO FIND EXTREMAL CONSTRUCTIONS?

By subtracting 1 = v + v + v we obtain
2
0< —= .
- 3 ;
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HOwW TO FIND EXTREMAL CONSTRUCTIONS?

By subtracting 1 = v + v + v we obtain
0

24



=M 26272
Tells us that that if < I = %) then

® graphs with coefficients < % do not appear in any extremal example
e all subgraphs of extremal example(s) should have %
e gives possible subgraphs for extremal examples (if not known)

® having % does not mean it appears in any extremal example

The semidefinite matrix gives a certificate.

27



SMALL EXPERIMENT WITH AN EXTRA CONSTRAINT

Maximize I

subject to ; ; =0

Mantel

1

Solution is 5

2



SMALL EXPERIMENT WITH AN EXTRA CONSTRAINT

Maximize I

subject to ; ; =0

Solution is 3. What if I =p>3?

Mantel

2



SMALL EXPERIMENT WITH AN EXTRA CONSTRAINT

Maximize I

subject to ; ; =0

Solution is 3. What if I =p>3?

Minimize ; ;
l >p

Mantel

subject to

2



Minimize ; ; subject to I > p.



Minimize ; ; subject to I > p.

THEOREM (RAZBOROV '08)

v> (t-1) (e - 2y/ee—pe+ 1) (¢4 VT e+ 1))

2(t+ 1)

where t = |1/(1 — p)|. Tight bound.

20



Minimize ; ; subject to I > p.

THEOREM (RAZBOROV '08)

(t=1) (+ -2/ = o5 1) e+ VHE= RET D))
v = tz(t+ )
where t = [1/(1—p)|. Tight bound.

Nontrivial application of FA.
We will try a simple approach for p = 0.6



Minimize ; ; subject to I > p.

THEOREM (RAZBOROV '08)

(6 1) (e~ 2V pE 1) (¢4 VTP D))
v = tz(t + 1)2
where t = |1/(1 — p)|. Tight bound.

Nontrivial application of FA.
We will try a simple approach for p = 0.6
(We not will reproduce the result)

v > 0.14150099... for p = 0.6 by Razborov : l

Note: Liu, Pikhurko, Staden: more exact results 2020 (99 or 144 pages)



Minimizev subject to I > 0.6.
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Minimizev subject to I > 0.6.
; ; > min{0,0,0,1}

A0



Minimizev subject to I > 0.6.
V-VV+V+V+\V
v > min{0,0,0,1}

VA VAR VANV




Minimizev subject to I > 0.6.
V-VV+V+V+\V
v > min{0,0,0,1}

ws ] VAT

A0



> 0.6.

I

V-7 T

V
I

0.6 <

ct to

ev subje

Minimiz

VoV

2
3

\VA:

1
3

in{0,0,0,1}

o*i;;’-+
- VsV YV YV

>m




Minimizev subject to I > 0.6.
; ; > min{0,0,0,1}
1 2
SO I v L vt s vl v
® 3 3
0.6:O.6v+0.6 ; ; +0.6v+0.6v

A0
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V-V o\ +
VZmin{0,0,0J}

< w7 (o) V() V0



V-V o\ +
VZmin{0,0,0J}

< w7 (o) V() V0

lvvv)<iz>(l 1)
ER VAR VAV

/\

o o
IA IN

L S
<|<M

VS

w o—e



o 0 W

v20v+0v+0v+v
VZmin{o,o,o,l}

o NN N
0217+ o) 7+ (-2) V7 -047)

) = 0 (matrix is positive semidefinite)

o T 0
Q O O

A9



V- N T
AR vAL L v v
027+ po- ) 7 (53 V47

a-+2c

0.6d — d— —

\/ = min{ogd—a. (00— 3) - 255
2 b+ 2c

0.6 — d——,1—-04d - b

(00-5) -5 }



> 0.14150099 .

v > min {O.6d _a, (0.6 - ;) d— aj;zc’

2
<0.6—3>d— b+2c,1—0.4d—b}

3

Numerical solution from CSDP:

a =6 x 0.1200006508849779385 a=0.72
b =6 x 0.05333290843810910981 b=0.32
c =6 x —0.07999989818128358521 c=-048
d = 1.400006454027185265 d=14

v > min {0.12,0.453,0.12,0.12} = 0.12

A4



How TO IMPROVE 0.127

Sample bigger graphs. Instead of

use

v > 0.14150099. ..

AR



How TO IMPROVE 0.127 v > 0.14150099. ..

Sample bigger graphs. Instead of

use

(5 ) (5 9 )
(5 )



How TO IMPROVE 0.127 v > 0.14150099. ..

Sample bigger graphs. Instead of

use

This gives



How TO IMPROVE 0.12781...7

Sample even bigger graphs.
Use Ks instead of K4
Include even more types and flags.

v > 0.14150099. ..

A6



How TO IMPROVE 0.12781...7

Sample even bigger graphs.

Use Ks instead of K4

Include even more types and flags.
This gives

; ; > 0.1333333 = 2/15.

v > 0.14150099. ..
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How TO IMPROVE 0.12781...7

Sample even bigger graphs.

Use Ks instead of K4

Include even more types and flags.
This gives

; ; > 0.1333333 = 2/15.

Try even bigger!

v > 0.14150099. ..

A6



How TO IMPROVE 0.12781...7 v > 0.14150009 . ..

Sample even bigger graphs.
Use Ks instead of K4
Include even more types and flags.

This gives
; ; > 0.1333333 = 2/15.

Try even bigger!

vertices # graphs time bound

3 4 instant 0.12

4 11 instant 0.127815. ..
5 34 instant 0.13333...
6 156 seconds 0.13333...
7 1044 minutes 0.13333...
8 12346 day(s) 0.13333...
9 274668  not computable* ?

* needs hundreds of GB of RAM, maybe easy in 10 years?

A6



GETTING 0.14150099. ..

v > 0.14150099. .. for p = 0.6 by Razborov

Minimize v

subject to I —-p >0
)

AT



GETTING 0.14150099. ..
v > 0.14150099... for p = 0.6 by Razborov

Minimize v

subject to H - < I — p> > 0 for any graph H
°

AT



GETTING 0.14150099. ..

v > 0.14150099... for p = 0.6 by Razborov

Minimize v

subjectto H - ( I
)

— p> > 0 for any graph H

vertices # graphs time bound new bound
3 4 instant 0.12 0.12
4 11 instant  0.12781. .. 0.131746. ..
5 34 instant  0.13333... 0.14046241...
6 156 seconds 0.13333... 0.14150099...
7 1044 minutes 0.13333... 0.14150099. ..
8 12346 day(s) 0.13333... 0.14150099...

These are just numerical bounds! Not exact.

AT



GOODMAN’S BOUND
Recall we got for p = 0.6

1 a+ 2c
§7 > min< 0.6d — 06—=|d-—
_mm{ a,< 3> 3

(0.6—2>d— b+2C,1—(1—0.6)d—b}

3 3



GOODMAN’S BOUND
Recall we got for p = 0.6

1 a+ 2c
:7 > min< 0.6d — 06—=|d-—
_mm{ a,( 3> 3

3 3

(0.6—2>d— b+2C,1—(1—0.6)d—b}

Same thing holds when 0.6 is replaced by a parameter p.
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GOODMAN’S BOUND
Recall we got for p = 0.6

1 a+ 2c
:7 > min< 0.6d — 06—=|d-—
_mm{ a,( 3> 3

(0.6—2>d— b+2C,1—(1—0.6)d—b}

3 3

Same thing holds when 0.6 is replaced by a parameter p.

a=2p’ b=2p*—4p+2 c=p(2p—2) d=4p—1

VZ2p2—P

gives Goodman's bound:



GOODMAN’S BOUND
Recall we got for p = 0.6

1 a+ 2c
:7 > min< 0.6d — 06—=|d-—
_mm{ a,( 3> 3

(0.6—2>d— b+2C,1—(1—O.6)d—b}

3 3

Same thing holds when 0.6 is replaced by a parameter p.

a=2p’ b=2p*—4p+2 c=p(2p—2) d=4p-1

VZ2pz—p
4

This is tight for p € {%,%,g,...}. [ .

gives Goodman's bound:

AR



Thank you!
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