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Ramsey and Turán

Theorem (Ramsey (1930))

For every r , s exists R(r , s) such that every graph on R(r , s) vertices contains Kr or Ks .

Theorem (Turán (1941))

Kq-free graph on n vertices maximizing the number of edges is Tq−1(n).

T2(n) T3(n) T4(n) T5(n)
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Ramsey-Turán

Problem
What Kq-free graph on n vertices maximizing the number of edges while having low
independence number?
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Problem
What Kq-free graph on n vertices is maximizing the number of edges while having low
p-independence number?

p-independence number of a graph G is

αp(G ) := max {|U| : U ⊆ V (G ) and G [U] is Kp-free}

Note α2(G ) = α(G )

Ramsey-Turán number

RTp(n,Kq,m) := max{e(G ) : G is Kq-free, v(G ) = n, αp(G ) ≤ m, }

G

α5(G) + 1
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p-independence number of a graph G is

αp(G ) := max {|U| : U ⊆ V (G ) and G [U] is Kp-free} .

Ramsey-Turán number

RTp(n,Kq,m) := max{e(G ) : G is Kq-free, v(G ) = n, αp(G ) ≤ m, }

Asymptotic version

ϱp(q) := lim
ε→0

lim
n→∞

RTp(n,Kq, εn)(n
2

)
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Conjecture (Erdős, Hajnal, Simonovits, Sós and Szemerédi ’94)

The asymptotic extremal graph G for ϱp(q) has the following structure. Let
q = pt + r + 2, where t ∈ N and r ∈ Zp. Then there is a partition
V (G ) = V0 ∪ V1 ∪ · · · ∪ Vt such that

• e(G [Vi ]) = o(n2) for all 0 ≤ i ≤ t;

• dG (V0,V1) =
r+1
p − o(1), and degrees

in G [V0,V1] differ by o(n);

• dG (Vi ,Vj) = 1− o(1) for all pairs
{i , j} ≠ {0, 1}. r+1

p

1 11

1

V0

Kp

Kr+1

V1

V2Vt

Kp

KpKp

r+1
p

In particular
ϱp(q) = ϱ⋆p(q) :=

(t−1)(2p−r−1)+r+1
t(2p−r−1)+r+1 .

Liu, Reiher, Sharifzadeh, and Staden ϱ16(22) = 1/6 > 5/32 = ϱ⋆16(22)
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Conjecture (Erdős, Hajnal, Simonovits, Sós and Szemerédi ’94)
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{i , j} ≠ {0, 1}. r+1

p

1 11

1

V0

Kp

Kr+1

V1

V2Vt

Kp

KpKp

r+1
p

In particular
ϱp(q) = ϱ⋆p(q) :=

(t−1)(2p−r−1)+r+1
t(2p−r−1)+r+1 .

Liu, Reiher, Sharifzadeh, and Staden ϱ16(22) = 1/6 > 5/32 = ϱ⋆16(22)

6
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Conjectured construction
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Figure: Sketch of a construction for ϱ5(12) ≥ 10
19 .

Liu, Reiher, Sharifzadeh, and Staden
Let q = pt + ℓ+ 1. Then for all 0 ≤ ℓ ≤ p/2: ϱp(q) ≥ ϱ⋆p(q)
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Our work

We calculate upper bound on ϱp(q) for some small values of p and q.

ϱp(q) = lim
ε→0

lim
n→∞

RTp(n,Kq, εn)(n
2

) .

Plan

• Take large Kq-free n-vertex graph G where every
εn vertices contain Kp.

• Apply Szemerédi Regularity Lemma

• Get reduced graph R

• Note R is edge-weighted graph

• Show R does not contain certain subgraphs

• Compute an upper bound on edge density in R
(Weighted Turán Problem)

• It gives an upper bound on the edges in G

0.5

1 0.5

0.8

0.2

V0

G

V1

V2V3

x0 0.5 x1

0.8

x20.5x3

0.2
1

R
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Weighted Turán Problems

An edge weighting w is w : E (G ) → [0, 1].

w(G ) :=
2

n2

∑
e∈E(G)

w(e).

A weighted clique is (r , f )

f :

(
[r ]

2

)
→ [0, 1]

(G ,w) contains (r , f ) if exists injective

ϕ : [r ] → V (G ) ϕ(i)ϕ(j) ∈ E (G ) and w(ϕ(i)ϕ(j)) > f (ij)

9



Asymptotic problem

An edge weighting w is w : E (G ) → [0, 1].

w(G ) :=
2

n2

∑
e∈E(G)

w(e).

Asymptotic Turán problem:

d(Kq) := lim
n→∞

max
|V (G)|=n,G is Kq-free

e(G )/

(
n

2

)
Set of weighted cliques F

d(F) := lim
n→∞

max
|V (G)|=n,G is F-free

w(G )

10



Weighted Turán

A Turán edge weighting wT : E (G ) → [0, 1].

wT (e) :=
r

2(r − 1)
where r = argmaxk{e is in k-clique in G}

wT (G ) :=
2

n2

∑
e∈E(G)

wT (e).

Observation
For every k ≥ 2

lim
n→∞

wT (Tk(n)) =
1

2

since e(Tk(n)) =
r−1
r

(n
2

)
.

Theorem (Bradač; Malec, Tompkins)

For every G holds wT (G ) ≤ 1
2 .

11



Key lemma

g(A) := max

{
u⊺Au

∣∣u = (u1, . . . , um)
⊺,

m∑
i=1

ui = 1, ui ≥ 0

}
.

A is dense if for every i ∈ [m], Ai ,i = 0 and A′ obtained from A by removing i th row
and column satisfies g(A′) < g(A).

Lemma (Liu, Reiher, Sharifzadeh, and Staden 2021+)

Let m ∈ N and let A = (aij) be a dense symmetric m ×m matrix with nonnegative
entries and let u be optimal for A. Then

1. A is positive, that is, aij > 0 for every 1 ≤ i < j ≤ m,

2. ui > 0 for every i ∈ [m],

3.
∑

i∈[m]\{j} aijui = g(A), for every j ∈ [m].

12



Theorem (Bradač)

For every G holds wT (G ) ≤ 1
2 .

Proof: Let V (G ) = v1, . . . , vn. Define A ∈ Rn×n

Ai ,j =

{
wT (vi , vj) if (vi , vj) ∈ E (G )

0 otherwise

for x = (1/n, . . . , 1/n), we obtain

wT (G ) =
2

n2

∑
e∈E(G)

wT (e) = x⊺Ax ≤ g(A) ≤ 1

2

A′ principal submatrix of A maximizing g(A′), pick minimal by inclusion
A′ is dense, let K ⊆ V (G ) correspond to A′.
K induces a clique by Lemma
ai ,j ≤ wT (|K |)
g(A) ≤ g(A′) ≤

∑
i∈K ui

∑
j∈K ,j ̸=i ujwT (k) = wT (k)

∑
i∈K ui (1− ui ) =

wT (k)
(
1−

∑
i∈K u2i

)
≤ wT (k)

(
1− 1

k

)
= 1

2
13



Other weights

A clique weighting cw : N → [0, 1].

w(e) := cw(r) where r = argmaxk{e is in k-clique in G}

w(G ) :=
2

n2

∑
e∈E(G)

w(e)

Theorem
Let cw be a clique weighting. Under mild assumptions, if w(G ) is close maximum,
then G is close Tr (n) for some r .

14



Other weights

A clique weighting cw : N → [0, 1],
w(e) := cw(r) where r = argmaxk{e is in k-clique in G}
w(G ) := 2

n2
∑

e∈E(G) w(e)

In K5-free graphs, cw(2) = 1
If cw(3) ≤ 3/4 and cw(4) ≤ 2/3, then
T2(n) is extremal.

If cw(3) ≥ 3/4 and cw(3) ≥ 9
8cw(4),

then T3(n) is extremal.

If cw(4) ≥ 2/3 and cw(3) ≤ 9
8cw(4),

then T4(n) is extremal.

cw(3)

cw(4)

1

1

3
4

2
3

8
9

0

wT
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Back to Ramsey-Turán

Ramsey-Turán number

RTp(n,Kq,m) := max{e(G ) : G is Kq-free, v(G ) = n, αp(G ) ≤ m, }

Asymptotic version

ϱp(q) = lim
ε→0

lim
n→∞

RTp(n,Kq, εn)(n
2

) .

ϱ2(2t+1) =
t − 1

t
for all t ≥ 1, and ϱ2(2t) =

3t − 5

3t − 2
for all t ≥ 2.

p, q 5 6 7 8 9 10 11 12 13 14

3 H S E H E H E H
4 0 H S S E H ⋆ E H
5 0 0 S S S S E ⋆
6 0 0 0 S S S S ⋆ E ⋆

16



Our addition

RTp(n,Kq,m) := max{e(G ) : G is Kq-free, v(G ) = n, αp(G ) ≤ m, }

Asymptotic version

ϱp(q) = lim
ε→0

lim
n→∞

RTp(n,Kq, εn)(n
2

) .

ϱ2(2t+1) =
t − 1

t
for all t ≥ 1, and ϱ2(2t) =

3t − 5

3t − 2
for all t ≥ 2.

Theorem
The following bounds hold: ϱ4(11) ≤ 4

7 , ϱ5(12) ≤
10
19 , ϱ6(12) ≤

5
12 , and ϱ6(14) ≤ 12

23 .
In particular, ϱ5(12) =

10
19 .

Translated to weighted Turán problems solved using flag algebras.
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Proof sketch for ϱ5(12) ≤ 10
19.

• Large K12-free n-vertex graph G
where every εn vertices contain K5.

• Apply Szemerédi Regularity Lemma

• Get reduced graph R

• Note R is edge-weighted graph

• Show R does not contain certain
subgraphs

• Compute an upper bound on edge
density in R
(Weighted Turán Problem)

• It gives an upper bound on the edges
in G

0.5

1 0.5

0.8

0.2

V0

G

V1

V2V3

x0 0.5 x1

0.8

x20.5x3

0.2
1

R

18



Forbidden configuration on R

εn vertices contain K5, find K12 if R contains weighted triangle v1v2v3.
Embedding lemma by Erdős, Hajnal, Simonovits, Sós, Szemeredi, see also Liu et. al.

2
v1

5v2 5 v3

1
5 + ε1

2 + ε

4
5 + ε

5n
19

5n
19

9n
19

1
5

1 1
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All forbidden configurations for ϱ5(12) ≤ 10
19

2
v1

5v2 5 v3

1
5 + ε1

2 + ε

4
5 + ε

3
v1

5 v34v2

1
2 + ε3

5 + ε

3
5 + ε

1
v1

1
v2

5

v3

5

v4

ε

ε
ε ε

ε

4
5 + ε

1
v1

2
v2

4

v3

5

v4

ε

ε
ε

1
5 + ε

1
2 + ε

3
5 + ε

2
v1

2
v2

3

v3

5

v4

1
2 + ε

1
5 + ε

1
2 + ε

1
5 + ε

1
2 + ε

1
2 + ε
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Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic Logic 72
(2007), 1239–1282.
David P. Robbins Prize by AMS for Razborov in 2013 over
300 citations (on google)

Example
If density of edges is p, what is the minimum density of triangles?

• Designed to attack extremal problems.

• Works well if constraints as well as desired value can be computed by checking small
subgraphs (or average over small subgraphs).

• The results are for the limit as graphs get very large.

21



Weighted problem using flag algebras

• No such thing as weighted flags
• Flag algebras allow coloring edges from a finite set of colors
• Make density ranges as colors

name/color density interval rule

1 [0, ε) no embedding
2 [ε, 1/5 + ε) any 1 vertex
3 [1/5 + ε, 1/2 + ε) some 2 vertices
4 [1/2 + ε, 3/5 + ε) any 2 vertices or some 3 vertices
5 [3/5 + ε, 4/5 + ε) some 4 vertices
6 [4/5 + ε, 1] any 5 vertices

Flag result

1

5
c2 +

1

2
c3 +

3

5
c4 +

4

5
c5 + c6 ≤

10

19
+ o(1)

2
v1

5v2 5 v3

1
5 + ε1

2 + ε

4
5 + ε

22



Flag Algebras

⋆ Nothing in these slides is endorsed by Razborov except this picture
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Example extremal problem

Theorem (Mantel 1907)

Every n-vertex triangle-free graph contains at most 1
4n

2 edges.

Problem
Maximize a graph parameter (# of edges) over a class of graphs (triangle-free).

• local condition and global parameter

• threshold

• bound and extremal example

We will use colors for edges and non-edges.

24
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Flag algebras definitions

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red
triangle, i.e. # /

(n
3

)
.

The probability that three random vertices in G span a graph
isomorphic to a triangle with one red and two blue edges.

v

The probability that a random vertex other than v is
connected to v by a red edge, i.e., the red degree of v
divided by n − 1.

+ =

1

Type - flag induced by labeled vertices

1 2

Flags

25
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

+ + + = 1

Same kind as

+ = 1.

26



Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

=
3

3
+

2

3
+

1

3
+

0

3

Expanded version:

P

( )
= P

(
|

)
· P
( )

+ P

(
|

)
· P
( )

+ · · ·
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Flag algebras identities

Let G be a 2-edge-colored complete graph on n vertices.

v
×

v
=

v

?
+ o(1) =

v
+

v
+ o(1)

v
×

v
=

1

2 v

?
+ o(1) =

1

2 v
+

1

2 v
+ o(1)

v

?
: The probability of choosing two different vertices . . .

v
×

v
: The probability that choosing two vertices u1, u2 other than v gives red

vu1 and blue vu2.

o(1) as |V (G )| → ∞ (will be omitted on next slides)
28
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Identities Summary

1 = + + +

=
3

3
+

2

3
+

1

3
+

0

3

v
×

v
=

v
+

v

v
×

v
=

1

2 v
+

1

2 v

1

3
=

1

n

∑
v∈V (G)

v
; =

1

n

∑
v∈V (G)

v
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Flag algebras - example

Theorem (Mantel 1907)

Every triangle-free graph contains at most 1
4n

2 ≈ 1
2

(n
2

)
edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude ≤ 1
2 .)

1 = + +

+

= 0 +
1

3
+

2

3

≤ 2

3

(
+ +

)
︸ ︷︷ ︸

=1

≤ 2

3
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Example - Mantel’s theorem

Assume = 0. (We want to conclude ≤ 1
2 .)

= 0 +
1

3
+

2

3

Idea: find c1, c2, c3 ∈ R such that for every graph G

0 ≤ c1 + c2 + c3 +o(1).

After summing together

≤ c1 +

(
1

3
+ c2

)
+

(
2

3
+ c3

)
and

≤ max

{
0 + c1,

1

3
+ c2,

2

3
+ c3

}(
+ +

)
︸ ︷︷ ︸

=1
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Flag algebras - candidates for c1, c2, c3

0 ≤

1

n

∑
v

(
v
,

v

)(
a c
c b

)(
v
,

v

)T

=

1

n

∑
v

a
v

?
+ b

v

?
+

1

2

c
v

?

+
1

2
c

v

?

= a +
a+ 2c

3
+

b + 2c

3

+ b

c1 = a, c2 =
a+ 2c

3
, c3 =

b + 2c

3

(
a c
c b

)
≽ 0 (matrix is positive semidefinite)
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Flag algebras - using c1, c2, c3

= 0 +
1

3
+

2

3

0 ≤ a +
a+ 2c

3
+

b + 2c

3

≤ max

{
a,

1 + a+ 2c

3
,
2 + b + 2c

3

}(
+ +

)
︸ ︷︷ ︸

=1

Try (
a c
c b

)
=

(
1/2 −1/2
−1/2 1/2

)
.

It gives

≤ max

{
1

2
,
1

6
,
1

2

}
=

1

2
.

(
a c
c b

)
≽ 0 (matrix is positive semidefinite)
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Flag algebras - optimizing a, b, c

≤ max

{
a,

1 + a+ 2c

3
,
2 + b + 2c

3

}

(SDP)



Minimize d

subject to a ≤ d
1+a+2c

3 ≤ d
2+b+2c

3 ≤ d(
a c

c b

)
≽ 0

(SDP) can be solved on computers using CSDP or SDPA.
Rounding may be needed for exact results.
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How to find extremal constructions?
We got

≤ max

{
1

2
,
1

6
,
1

2

}
=

1

2
.

which is

≤ 1

2
+

1

6
+

1

2

Suppose G is an extremal graph

(
= 1

2

)
. Then

1

2
= ≤ 1

2
+

1

6
+

1

2

1 ≤ +
1

3
+ .

By subtracting 1 = + + we obtain

0 ≤ −2

3
.

Hence = 0.

36



How to find extremal constructions?

≤ 1

2
+

1

6
+

1

2

Suppose G is an extremal graph

(
= 1

2

)
. Then

1

2
= ≤ 1

2
+

1

6
+

1

2

1 ≤ +
1

3
+ .

By subtracting 1 = + + we obtain

0 ≤ −2

3
.

Hence = 0.

36



How to find extremal constructions?

≤ 1

2
+

1

6
+

1

2

Suppose G is an extremal graph

(
= 1

2

)
. Then

1

2
= ≤ 1

2
+

1

6
+

1

2

1 ≤ +
1

3
+ .

By subtracting 1 = + + we obtain

0 ≤ −2

3
.

Hence = 0.

36



How to find extremal constructions?

≤ 1

2
+

1

6
+

1

2

Suppose G is an extremal graph

(
= 1

2

)
. Then

1

2
= ≤ 1

2
+

1

6
+

1

2

1 ≤ +
1

3
+ .

By subtracting 1 = + + we obtain

0 ≤ −2

3
.

Hence = 0.

36



How to find extremal constructions?

≤ 1

2
+

1

6
+

1

2

Suppose G is an extremal graph

(
= 1

2

)
. Then

1

2
= ≤ 1

2
+

1

6
+

1

2

1 ≤ +
1

3
+ .

By subtracting 1 = + + we obtain

0 ≤ −2

3
. Hence = 0.

36



≤ max

{
1

2
,
1

6
,
1

2

}
=

1

2

Tells us that that if

(
= 1

2

)
, then

• graphs with coefficients < 1
2 do not appear in any extremal example

• all subgraphs of extremal example(s) should have 1
2

• gives possible subgraphs for extremal examples (if not known)

• having 1
2 does not mean it appears in any extremal example

The semidefinite matrix gives a certificate.
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Small experiment with an extra constraint

Mantel


Maximize

subject to = 0

Solution is 1
2 .

What if = p > 1
2?


Minimize

subject to ≥ p

38
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Minimize subject to ≥ p.

Theorem (Razborov ’08)

≥
(t − 1)

(
t − 2

√
t(t − p(t + 1))

)(
t +

√
t(t − p(t + 1))

)2
t2(t + 1)2

where t = ⌊1/(1− p)⌋. Tight bound.
Nontrivial application of FA.
We will try a simple approach for p = 0.6
(We not will reproduce the result)

≥ 0.14150099 . . . for p = 0.6 by Razborov

Note: Liu, Pikhurko, Staden: more exact results 2020 (99 or 144 pages)
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n

∑
v

(
v
,

v

)(
a c
c b

)(
v
,

v

)T

0 ≤ a +
a+ 2c

3
+

b + 2c

3
+b

41



= 0 + 0 + 0 +

≥ min{0, 0, 0, 1}

0 ≤ −0.6 +

(
1

3
− 0.6

)
+

(
2

3
− 0.6

)
+ 0.4

0 ≤ 1

n

∑
v

(
v
,

v

)(
a c
c b

)(
v
,

v

)T

0 ≤ a +
a+ 2c

3
+

b + 2c

3
+b

41



= 0 + 0 + 0 +

≥ min{0, 0, 0, 1}

0 ≥ −a − a+ 2c

3
− b + 2c

3
−b

0 ≥ d

(
0.6 +

(
0.6− 1

3

)
+

(
0.6− 2

3

)
− 0.4

)
 a c 0

c b 0
0 0 d

 ≽ 0 (matrix is positive semidefinite)
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= 0 + 0 + 0 +

0 ≥ −a − a+ 2c

3
− b + 2c

3
−b

0 ≥ d

(
0.6 +

(
0.6− 1

3

)
+

(
0.6− 2

3

)
− 0.4

)

≥ min

{
0.6d − a,

(
0.6− 1

3

)
d − a+ 2c

3
,(

0.6− 2

3

)
d − b + 2c

3
, 1− 0.4d − b

}
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≥ min

{
0.6d − a,

(
0.6− 1

3

)
d − a+ 2c

3
,(

0.6− 2

3

)
d − b + 2c

3
, 1− 0.4d − b

}
Numerical solution from CSDP:

a = 6× 0.1200006508849779385 a = 0.72

b = 6× 0.05333290843810910981 b = 0.32

c = 6×−0.07999989818128358521 c = −0.48

d = 1.400006454027185265 d = 1.4

≥ min
{
0.12, 0.453, 0.12, 0.12

}
= 0.12

≥ 0.14150099 . . .
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How to improve 0.12?

Sample bigger graphs. Instead of

1 = + + +

use

1 = + + + · · ·+

and include also M,P ≽ 0

0 ≤
(

1 2
,
1 2

,
1 2

,
1 2

)T

M

(
1 2

,
1 2

,
1 2

,
1 2

)
0 ≤

(
1 2

,
1 2

,
1 2

,
1 2

)T

P

(
1 2

,
1 2

,
1 2

,
1 2

)
This gives

≥ 0.127815 . . .

≥ 0.14150099 . . .
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How to improve 0.12781. . . ?

Sample even bigger graphs.
Use K5 instead of K4

Include even more types and flags.

This gives

≥ 0.1333333 = 2/15.

Try even bigger!

vertices # graphs time bound

3 4 instant 0.12
4 11 instant 0.127815. . .
5 34 instant 0.13333. . .
6 156 seconds 0.13333. . .
7 1044 minutes 0.13333. . .
8 12346 day(s) 0.13333. . .
9 274668 not computable⋆ ?

⋆ needs hundreds of GB of RAM, maybe easy in 10 years?

≥ 0.14150099 . . .
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Getting 0.14150099 . . .

≥ 0.14150099 . . . for p = 0.6 by Razborov


Minimize

subject to

H ·
(

− p

)

≥ 0

for any graph H

vertices # graphs time bound new bound

3 4 instant 0.12 0.12
4 11 instant 0.12781. . . 0.131746. . .
5 34 instant 0.13333. . . 0.14046241. . .
6 156 seconds 0.13333. . . 0.14150099. . .
7 1044 minutes 0.13333. . . 0.14150099. . .
8 12346 day(s) 0.13333. . . 0.14150099. . .

These are just numerical bounds! Not exact.
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Goodman’s bound

Recall we got for p = 0.6

≥ min

{
0.6d − a,

(
0.6− 1

3

)
d − a+ 2c

3
,(

0.6− 2

3

)
d − b + 2c

3
, 1− (1− 0.6)d − b

}

Same thing holds when 0.6 is replaced by a parameter p.

a = 2p2 b = 2p2 − 4p + 2 c = p(2p − 2) d = 4p − 1

gives Goodman’s bound:

≥ 2p2 − p

This is tight for p ∈ {2
3 ,

3
4 ,

4
5 , . . .}. p

K3

1
2

1

1
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Thank you!
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