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Extremal Numbers for Graphs

ex(n,Kk) = maximum number of edges in Kk -free graph

Theorem (Turán 1941)

ex(n,Kk) =
k − 2

2(k − 1)
n2 + o(n)

T2(n) T3(n) T4(n) T5(n)
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π(F ) = lim
n→∞

ex(n,F )(n
2

)
Theorem (Erdős-Stone 1946)

ex(n,G ) =
χ(G )− 2

2(χ(G )− 1)
n2 + o(n2) π(G ) =

χ(G )− 2

χ(G )− 1

π(F) = min{π(F ),F ∈ F}

π(F) ∈ {k−1
k : k ∈ N}
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Turán Densities

We know all possible Turán densities even for families of forbidden graphs.

The line is showing possible densities



Extremal Numbers for (3-uniform) hypergraphs

π(F) maximum density of edges in F-free hypergraph is difficult

5/9 ≤ π(K 3
4 ) ≤ 0.5615 2/7 ≤ π(K 3−

4 ) ≤ 0.28689

π(F5) = 2/9 π(F3,2) = 4/9

π(F3,3) = 3/4 π(C−
ℓ ) ∈ {0, 1/4}

π(Cℓ) ∈ {0, 2
√
3− 3} for large ℓ

No analogue of Erdős-Stone.

Theorem (Balogh 2002)

There exists F with π(F) < min{π(F ),F ∈ F}.
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Turán Densities

Extremal Numbers for (3-uniform) hypergraphs

We will only consider 3-uniform hypergraphs, so edges are triples as on the right.
We don’t know K 3

4 it is for $500.
Some of the sporadic results are listed. Dylan King convinced us these are hard to get so here
are some of them.

Family is not determined by the minimum so things may get wild.



Hypergraphs jump

α is an achievable if exists F with π(F) = α.

α is a jump if there is no F with π(F) ∈ (α, α+ δ).

Frankl, Rödl 1984: “Hypergraphs do not jump” at 1− 1/ℓ2 for ℓ ≥ 7

Baber, Talbot 2011: “Hypergraphs do jump” at [0.2299, 0.2316) and [0.2871, 8/27)

Erdős 1964: π(F) ̸∈ (0, 2/9) i.e. jump.
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Turán Densities

Hypergraphs jump

Say nothing is in (0, 2/9). If π(F) is positive, then there is a construction with a positive density
of edges. Hence it also contains a blow-up of an edge. So blow-up of an edge is a construction
for a lower bound.

2/9 is F5 4/9 is F3, 2 3/4 is Fano plane. 2
√
3− 3 is long cycles



Codegree

codegree(u, v) := |{e : u, v ∈ e ∈ E}|

δ2(G ) minimum codegree

coex(n,F) := max{δ2(G ) : F-free n-vertex G}

γ(F) := lim
n→∞

coex(n,F)

n

Theorem (Mubayi-Zhao 2007)

γ does not jump

u v
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Turán Densities

Codegree

In the picture on the right, codegree of u and v is 7 while the δ2 is 0 since there are vertices
that are in no edge together.
We do it in 3-uniform hypergrahs, it can also be done in k-uniform and then one would take a
set of k − 1 vertices and study the common degree.
The achievable values form a dense set.

Conjecture is that for every α ∈ [0, 1) there is a family with γ(F) = α.



Positive co-degree

δ+2 (G ) minimum positive codegree

co+ex(n,F) := max{δ+2 (G ) : F-free n-vertex G}

γ+(F) := lim
n→∞

co+ex(n,F)

n

n
3

n
3

n
3

δ2(G ) = 0
δ+2 (G ) = n/3

Theorem (Halfpap, Lemons, Palmer)

γ+(F) ̸∈ (0, 1/3)
γ+(K−

4 ) = γ+(F5) = 1/3, γ+(F3,2) = 1/2, γ+(F) = 2/3
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Turán Densities

Positive co-degree

Empty graph is defined to have positive codegree zero.

Mike Santana had a note about blow-ups so this definition works well with blow-ups.



Our contribution

Theorem (Halfpap, Lemons, Palmer)

γ+(F) ̸∈ (0, 1/3)
γ+(K−

4 ) = γ+(F5) = 1/3, γ+(F3,2) = 1/2, γ+(F) = 2/3

Theorem (Balogh, Halfpap, L., Palmer)

γ+(F) ̸∈ (1/3, 2/5)
γ+(K 3

4 ,F3,2, Jk) = (k − 2)/(2k − 3)
γ+(F1) = 2/5, γ+(J4) = 4/7, γ+(F4,2) = 3/5
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Turán Densities

Our contribution

The first Theorem generalizes to r -uniform as 1/r and 1/(2r − 1).



Tools

Theorem (Removal Lemma)

If densities of F in G are o(1) then removal of o(n3) edges makes it F-free.

Theorem (Halfpap-Lemons-Palmer)

If G ′ is obtained from a nice G by removing o(n3) edges,
G ′ has a subgraph G ′′ with δ+2 (G

′′) close to δ+2 (G ).

Theorem (Halfpap-Lemons-Palmer)

If δ+2 (G ) ≥ cn then |E (G )| ≥ c3

2

(n
3

)
.

Theorem (Halfpap-Lemons-Palmer)

γ+(F ) = γ+(blow-up of F )
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Turán Densities

Tools

These also works form r -uniform hypergraphs.



γ(F) ̸∈ (1/3, 2/5)

If F forbids T3 then γ+(F) ≤ 1/3.

T3

If F permits T3, blow-up T3
2n
5

n
5

n
5

n
5

also permitted so γ+(F) ≥ 2/5.
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Turán Densities

γ(F) ̸∈ (1/3, 2/5)

This generalizes to r -uniform hypergraphs but lets not worry about it now.

Suppose for contradiction F forbids T3 and positive codegree is more than 1/3. Since it is

positive, there is an edge. All three pairs of vertices of the edge have positive codegree. Since

3 ∗ (1/3 + ε) > 1, there must be a vertex in an intersection of two of these, and that gives T3.



γ+(K 3
4 ,F3,2, J4) = 2/5

If positive codegree > 2/5, find T3

3 of the pairs have a common neighbor, find K 3
4 , F3,2 or J4.
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γ+(F1) = 2/5

γ+(K 3
4 ,F3,2, J4) = 2/5

If positive codegree > 2/5, find a blow-up of K 3
4 or F3,2 or J4 and then find F1.

c
a

b

d

e f

g

b
c

a d

e f

F1
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γ+(J4) = 4/7

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
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1 2

×
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− 4
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Turán Densities

γ+(J4) = 4/7

The extremal construction is a COMPLEMENT of the Fano plane on the right. We think the
construction is the interesting part.
Outline of the proof:

Apply flag algebras. Modeling the positive codegree condition is with the depicted equation. It

is saying that if you fix two vertices and count their codegree /n, it is either 0 which makes the

equation true or at least 4/7 which again makes the equation true. We get bunch of forbidden

structures, using the clean-up lemmas. In particular, there are only two subgraphs on 5 vertices

in the construction. Since positive codegree still high, we find K4. Notice X1,X2,X3,X4 form

a K4 and each of the 7 vertices is determined by adjacencies to X1,X2,X3,X4. Hence we can

partition the remaining vertices. See how the two graphs allow for either duplicating 4 as the

one on the left or missing a matching. The graph on the right is missing 1, 4, 5 and 2, 3, 5 so it

would place the vertex 5 in X5. We finish with a little clean-up to get the final structure.



γ+(F4,2) = 3/5
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γ+(F4,2) = 3/5
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Turán Densities

γ+(F4,2) = 3/5

The idea of the proof is the same. The main difference is that the extremal construction is a
blow-up of K 3

5 which is not drawn again in a complement but the complement are not 3-edges
but 2-edges. Razborov’s trick.
Notice that F4,2 has two the two remaining but the 4 vertices induce K 3−

4 .

And you can again see the two graphs on 5 vertices one is a duplicate and the other is K 3
5 . It

has 10 edges to it has to be, right?



Questions

Question

Find admissible values of γ+ in [25 ,
1
2 ] that are not k−2

2k−3 .
Find more jumps for γ+.
Find not jumps for γ+.
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“If γ makes you sad, your life may be more positive with γ+”

Thank you!
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Best-known density bounds for π, γ, and γ+.

F ≤ π(F ) π(F ) ≤ ≤ γ(F ) γ(F ) ≤ ≤ γ+(F ) γ+(F ) ≤
K 3−
4 2/7 0.28689 1/4 1/4 1/3 1/3

F5 2/9 2/9 0 0 1/3 1/3
F3,2 4/9 4/9 1/3 1/3 1/2 1/2
F 3/4 3/4 1/2 1/2 2/3 2/3
K 3
4 5/9 0.5615 1/2 0.529 1/2 0.543

F3,3 3/4 3/4 1/2 0.604 3/5 0.616

C5 2
√
3− 3 0.46829 1/3 0.3993 1/2 1/2

C7 2
√
3− 3 0.464186 1/3 0.371 1/2 1/2

C−
5 1/4 1/4 0 0 1/3 1/3

J4 1/2 0.50409 1/4 0.473 4/7 4/7
F4,2 4/9 0.4933328 1/3 0.4185 3/5 3/5

Not exhaustive table. See our paper for citations and definitions.
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