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Abstract

Given a group Γ acting on a set X, a k-coloring φ : X → {1, . . . , k} of X is distinguishing
with respect to Γ if the only γ ∈ Γ that fixes φ is the identity action. The distinguishing
number of the action Γ, denoted DΓ(X), is then the smallest positive integer k such that
there is a distinguishing k-coloring of X with respect to Γ. This notion has been studied in a
number of settings, but by far the largest body of work has been concerned with finding the
distinguishing number of the action of the automorphism group of a graph G upon its vertex
set, which is referred to as the distinguishing number of G.

The distinguishing number of a group action is a measure of how difficult it is to “break” all
of the permutations arising from that action. In this paper, we aim to further differentiate the
resilience of group actions with the same distinguishing number. In particular, we introduce
a precoloring extension framework to address this issue. A set S ⊆ X is a fixing set for Γ
if for every non-identity element γ ∈ Γ there is an element s ∈ S such that γ(s) 6= s. The
distinguishing extension number extD(X,Γ; k) is the minimum number m such that for all
fixing sets W ⊆ X with |W | ≥ m, every k-coloring c : X \W → [k] can be extended to a
k-coloring that distinguishes X.

In this paper, we prove that extD(R,Aut(R), 2) = 4, where Aut(R) is comprised of compo-
sitions of translations and reflections. We also consider the distinguishing extension number
of the circle and (finite) cycles, obtaining several exact results and bounds.
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1 Introduction

Given a group Γ acting on a set X, a k-coloring φ : X → {1, . . . , k} of X is distinguishing with
respect to Γ if the only γ ∈ Γ that fixes φ is the identity action. The distinguishing number of the
action Γ, denoted DΓ(X), is then the smallest positive integer k such that there is a distinguishing
k-colorings of X with respect to Γ.

The notion of distinguishing a general group action was introduced by Tymoczko in [35], where
a number of results on actions of Sn appear, and was also addressed in [16, 17]. In [28], the
distinguishing number of GLn(K) over a field K acting on the vector space Kn was completely
determined. We are most frequently concerned with the case where Γ is the action of a symmetry
group on some geometric or combinatorial object. In particular, the overwhelming body of work on
this problem is concerned with determining the distinguishing number of a graph G, first introduced
by Albertson and Collins [4] in 1996.

Specifically, a vertex coloring of a graph G, c : V (G)→ {1, . . . , k}, is said to be distinguishing if
the only automorphism of G that preserves all of the vertex colors is the identity. The distinguishing
number of a graph G, denoted D(G), is the minimum integer r such that G has a distinguishing r-
coloring. In the notation outlined above for general group actions, we therefore have that D(G) =
DAut(G)(V (G)). The distinguishing number of a graph has been widely studied for both finite (see
[3, 4, 8, 18, 19]) and, starting in [27], infinite (see [13, 14, 30, 31, 36]) graphs.

The distinguishing number of a group action is a measure of how difficult it is to “break”
all of the permutations arising from that action; the more colors required, the more resilient the
action. Almost all graphs have trivial automorphism group (see [12]), and hence have distinguishing
number 1. Many other familiar graph classes have distinguishing number 2 (see [2, 4, 11, 22, 25,
26]) despite their diverse collection of automorphism groups and seemingly disparate structural
properties. This leads us to ask the following:

How can we further differentiate the resilience of group actions with the same distinguishing
number?

In this paper, we propose a precoloring extension approach to this question.

1.1 Extending Precolorings to Distinguishing Colorings

A precoloring of X is a k-coloring of X \W for some k and subset W of X. We want to understand
when a precoloring can be extended to a distinguishing k-coloring of all of X. Specifically, given
a set W where every precoloring of X \ W can be extended to a distinguishing coloring of X,
it follows that an arbitrary k-coloring c of X can be modified into a distinguishing k-coloring by
changing at most the colors on W .

A precoloring of X \W cannot be extended to a distinguishing coloring if there is a nontrivial
element σ ∈ Γ such that σ pointwise stabilizes W ; hence we preclude such subsets W from our
consideration. Formally, a set S ⊆ X is a fixing set for Γ if the pointwise stabilizer of S in Γ is
trivial; that is, for every non-identity element σ ∈ Γ there is an element s ∈ S such that σ(s) 6= s.
We define the distinguishing extension number extD(X,Γ; k) to be the minimum number m such
that for all fixing sets W ⊆ X with |W | ≥ m, every precoloring c : X \W → {1, . . . , k} can be
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extended to a k-coloring of X that is distinguishing under Γ. If G is a graph, we write extD(G; k)
instead of the more cumbersome extD(V (G),Aut(G); k), and to further simplify, we write extD(G)
instead of extD(G;D(G)) and unambiguously refer to this quantity as the distinguishing extension
number of G. We similarly define extD(X) = extD(X,Γ;DΓ(X)) to be the distinguishing extension
number of X.

The problem of determining extD(X,Γ; k) can be viewed as a partizan combinatorial game that
fits under the broad umbrella of competitive graph coloring. Given a group Γ acting on a set X,
m ≥ 0 and k ≥ DΓ(X), two players, the Hero and and the Adversary, play the following game.
The Adversary begins by coloring all but an m-element fixing set of X using colors from {1, . . . , k}.
The Hero wins if he can extend the Adversary’s coloring to a distinguishing k-coloring of X by
coloring the m uncolored elements using colors from {1, . . . , k}. The distinguishing extension
number extD(X,Γ; k) is then the minimum m such that the Hero has a guaranteed win.

Our work in this paper is further motivated (and contextualized) by the following problem
in graph coloring: Given a graph G and a k-coloring c of some subset of V (G), when can c be
extended to a proper k-coloring of G? This problem was first introduced in [10, 23, 24], and
has been studied over the last twenty years not only in the context of proper colorings (see also
[5, 6, 32, 34]), but also for list [1, 9], circular [7, 15] and fractional [29] colorings of graphs. As is
the case here, the broad class of precoloring extension problems provide a framework by which it
is possible to contrast the colorability of graphs that have the same value of a particular coloring
parameter.

The remainder of this paper is structured as follows. In Section 2 we present some basic notions
and state our main results. In Section 3 we discuss an overview of our proof technique, with more
detailed discussion of uncolored elements in Section 4 and with the final proofs of the main results
in Section 5. We conclude with a discussion of future work in Section 6.

2 Preliminaries and Statement of Main Results

In this paper, we study the distinguishing extension number of the real line and the unit circle. Our
investigation of the latter also allows us to naturally study the distinguishing extension number of
the cycle Cn. We begin by more generally considering Rn, where Aut(Rn) is the action of affine
linear maps x 7→ Ax + b where A is a matrix with determinant in {+1,−1}. For instance, the
automorphisms of R are compositions of translations of R and reflections of R about a point.

Let Sd be the set of vectors x ∈ Rd+1 with ‖x‖2 = 1. The automorphisms of Sd are given by
the (d+ 1)× (d+ 1) real matrices with determinant in {+1,−1}. When considering S1, we instead
use the parameterization φ : R → S1 given by φ(t) = (cos(2πt), sin(2πt))>. Hence, we consider
R/Z, the collection of preimages of φ, to be the unit circle with automorphisms given by rotations
(x 7→ x+ α) and reflections (x 7→ β − x).

We first consider extD(R). Coloring (−∞, 0) red and [0,∞) blue is a distinguishing 2-coloring
of R, so we have that DAut(R)(R) = 2. Next, we give a lower bound on extD(R).

Proposition 1. extD(R) ≥ 4.

Proof. Color R \ {0, 1,−1} red and leave the remaining three elements blank. We claim that this
coloring cannot be extended to a distinguishing 2-coloring of R. Indeed, suppose that c is an
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extension of this coloring that uses only colors red and blue. If c assigns all three elements of
{0, 1,−1} the same color, then the reflection of R about 0 fixes c. Further, if only one of the
uncolored elements is colored blue, then the reflection of R about that point preserves c. Hence
we may assume that exactly two points in {−1, 0, 1}, call them x and y, are colored blue. It then
follows that the reflection about x+y

2
preserves c. This completes the proof. �

Our first main result shows that this lower bound is sharp.

Theorem 1. extD(R) = 4.

For a graph G, an injection φ : V (G) → X is a Γ-faithful embedding of G (into X) if the
following properties hold. First, there is an isomorphism ϕ between the subgroup Γ′ of Γ that
setwise stabilizes im(φ) and Aut(G), where im(φ) denotes the image of φ. Second, it is possible to
choose ϕ such that for each γ ∈ Γ′, the permutation σγ of im(φ) corresponding to the action of γ
satisfies

σγ(φ(v)) = φ(ϕ(γ)(v))

for all v ∈ V (G). That is, the permutation σγ of φ(V (G)) induced by an action γ ∈ Γ that stabilizes
φ(V (G)) is equal to the permutation of φ(V (G)) induced by the corresponding automorphism ϕ(γ)
of G. Note that for any n ≥ 3, any set of n equally spaced points on the unit circle naturally
corresponds to a faithful embedding of Cn into S1. Further, if ` divides n, C` has an Aut(Cn)-
faithful embedding into V (Cn). Finally, the unit cube Q3 has a faithful embedding into S2.

The following lemmas formalize two ways in which faithful embeddings can be used to provide
useful bounds on extD(X).

Lemma 1. Let Γ be a group acting on a set X and k ≥ DΓ(X). If G is a graph with a Γ-faithful
embedding into X such that D(G) ≤ k, then

extD(X,Γ; k) ≥ extD(G; k).

Proof. Let φ : V (G) → X be a Γ-faithful embedding of G into X, ` = extD(G; k) and let Γ′ be
the subgroup of Γ that setwise stabilizes X \ im(φ). Since extD(G; k) ≥ `, let Y ⊆ V (G) be a
set of size ` − 1 such that there is a k-coloring c : V (G) \ Y → [k] which does not extend to a
distinguishing k-coloring of G. Color each element of X \ im(φ) with color 1, and each element
x ∈ im(φ) \ Y with c(φ−1(x)). It then follows, from the definition of c and Γ′, that this coloring of
X \ Y cannot extend to a distinguishing k-coloring of X, and the result follows. �

Lemma 2. Let Γ be a group acting on a set X and k ≥ DΓ(X). If G is a graph with a Γ-faithful
embedding into X such that D(G) > k, then

extD(X,Γ; k) ≥ 1 + |G|.

Proof. As in Lemma 1, let φ : V (G)→ X be a Γ-faithful embedding of G into X, and let Γ′ be the
subgroup of Γ that setwise stabilizes X ′ = X \ im(φ). If we color all of X ′ using color 1, then it is
not possible to extend this precoloring to a distinguishing k-coloring of X, as such a k-coloring on
im(φ) would induce a distinguishing k-coloring of G. �
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The distinguishing number for graphs was introduced (in the guise of an entertaining problem)
and determined for finite cycles in [33]. Of particular interest here is the observation that when
n ≥ 6 we can distinguish Cn with two colors, but D(C3) = D(C4) = D(C5) = 3. Applying Lemma
2 with C3, C4, or C5 gives rise to the following conjecture.

Conjecture 2.

extD(Cn) =


4 if n 6≡ 0 (mod 4 or 5),

5 if n ≡ 0 (mod 4),

6 if n ≡ 0 (mod 5).

The uncolored elements and precolorings in each diagram of Figure 1 establish the sharpness
of this conjecture. Note that these precolorings also demonstrate that a non-extendible coloring
need not use only one color.

n = 25

(a) 5 | n.

n = 24

(b) 4 | n.

n = 21

(c) 3 | n.

n = 23

(d) Other.

Figure 1: Sharpness examples for Conjecture 2.

We verify Conjecture 2 in infinitely many cases, based on the prime factorization of n.

Theorem 3. If the minimum prime divisor of n is at least 7, then extD(Cn) = 4.

We also show that for all n, both extD(S1) and extD(Cn) are bounded by an absolute constant.

Theorem 4. For all n ≥ 3, extD(Cn) ≤ extD(S1) ≤ 16.

Note that the inequality extD(Cn) ≤ extD(S1) follows from Lemma 1. As C5 has a faithful
embedding into C10, extD(C10) ≥ 6 by Lemma 2, and since C10 has a faithful embedding into S1,
extD(S1) ≥ 6 by Lemma 1. We conjecture that this lower bound is correct.

Conjecture 5. extD(S1) = 6.

3 Overview of the Proof Technique

The proofs of Theorems 1, 3, and 4 utilize a common argument, so we prove all three results
simultaneously. In this section we set up terminology and notation that is used throughout the
rest of the paper.
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Let X be one of Cn, R/Z, or R. Each choice of X has two categories of automorphisms:
reflections and translations. In the case of cycles and the unit circle, translations are rotations
so we refer to rotations as translations for the sake of uniformity. If a reflection τ stabilizes an
element x ∈ X, then we say that τ is the reflection about x.

Observe that every set of at least three elements in X is a fixing set. For a set W ⊂ X, let c0

be a precoloring of X \W . We refer to the elements of W as blanks. Let γ ∈ Aut(X). We say that
c0 permits γ if there is an extension c∗ of c0 to X such that γ preserves c∗; that is, c∗(x) = c∗(γ(x))
for all x ∈ X.

We will now give a brief outline of the proof. Assume for the sake of contradiction that
c0 : X \ W → {R,B} is a red-blue coloring of X \ W such that no extension of c0 to X is
distinguishing. First we will prove that there exists a point w0 ∈ W such that the reflection about
w0 sends the elements of W \ {w0} to elements outside of W . Therefore, there is at most one
extension of c0 to W \ {w0} that permits the reflection about w0. Next we prove that there is at
most one extension of c0 to W \ {w0} that permits a translation. Any extensions to W \ {w0}
that permits either the reflection about w0 or a translation are forbidden; we show in all cases that
there are at most two forbidden extensions of c0 to W \ {w0}.

Fix a non-forbidden extension of c0 to W \ {w0}; call it c. Since no extension distinguishes X
and non-forbidden extensions do not permit translations, c must permit a reflection. Furthermore,
since c does not permit the reflection about w0, no reflection permitted by c fixes w0. Thus the
reflection permitted when c is extended by coloring w0 red is distinct from the reflection permitted
when c is extended by coloring w0 blue, since w0 has distinct images under these reflections. Let
τR be the reflection permitted when w0 is colored red and call it the red reflection permitted by c.
Let τB be the reflection permitted when w0 is colored blue and call it the blue reflection permitted
by c. Since τR and τB are distinct, the composition τB ◦ τR yields a nontrivial translation σ of X;
we say that σ is generated by c. See Figure 3 for examples of τR, τB, and σ for the circle and the
real line.

We consider the orbits of the elements of X under the actions of the group generated by
σ. In particular, we wish to understand the colors of the elements in these orbits. Let x ∈
X \ {w0, τR(w0)}. Since c permits τR, it follows that c(x) = c(τR(x)), so τR is color-preserving on
X \ {w0, τR(w0)}. As c is not defined on w0, τR is not color-preserving on {w0, τR(w0)}. Similarly,
τB is color-preserving on X \ {w0, τB(w0)}. Observe that

c(σ(w0)) = c(τB(τR(w0)) = c(τR(w0)) = R
c(σ−1(w0)) = c(τR(τB(w0)) = c(τB(w0)) = B

hold for our definitions of τR and τB.
Now let x ∈ X \ {w0, τR(w0), σ−1(w0)}. It follows that c(x) = c(τR(x)) = c(τB(τR(x))) =

c(σ(x)). The only elements whose image do not have the same color under σ are: σ−1(w0), whose
image is a blank; τR(w0), whose image is the blue element τB(w0); and w0, which is itself a blank.
Therefore σ is, in a sense, nearly color-preserving.

All of these observations regarding the behavior of the permitted reflections of non-forbidden
extensions are summarized in the following fact.
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w0

τR τB

σ

(a) Building σ from τR and τB for cycles and circles.

w0

τR

τB

σ

(b) Building σ from τR and τB for the real line.

Figure 2: Building σi.
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Fact 6. Let c be a non-forbidden extension of c0 to W \ {w0}, let τR and τB be the red and blue
reflections permitted by c, respectively, and let σ = τB ◦ τR. The following properties hold:

(F0) c(σ(w0)) = R and c(σ−1(w0)) = B;

(F1) σ maps a red element to a blue element only at τR(w0)
σ7→ τB(w0);

(F2) σ never maps a blue element to a red element, and σ2 maps a blue element to a red element
only at σ−1(w0)

σ7→ w0
σ7→ σ(w0);

(F3) c(σ(x)) = c(x) for all elements x /∈ {τR(w0), σ−1(w0), w0}.

Figure 3 shows the possible colorings of the orbit of σ containing w0. This orbit is either infinite
or finite, and may or may not contain τR(w0) and τB(w0). In particular, when X = R, the orbit is
always infinite. When X = R/Z, the orbit may be infinite or finite. When X = Cn, the orbit is
always finite.

Suppose that c1 and c2 are two non-forbidden extensions and assume that c1 and c2 do not
extend to distinguishing colorings. For each i ∈ {1, 2}, let τ

(i)
R and τ

(i)
B be the red and blue

reflections permitted by ci and let σi be the rotation generated by ci. Both σ1 and σ2 satisfy Fact 6
for their respective colorings. We consider how σ1 and σ2 interact. Some possible relationships
between σ1 and σ2 are demonstrated in Figure 4.

Suppose that σ1 has infinite order. If σi1 6= σj2 for all integers i and j (not both 0), then σ2 has
infinite order and each σ1-orbit intersects each σ2-orbit in at most one element. Thus the orbit of
w0 under the action of the group generated by σ1 and σ2 has a lattice structure, as in Figure 4(a).
Otherwise, there are integers i, j, not both 0, such that σi1 = σj2. If i = 0, then σ2 has finite order,
and the orbit of w0 under σ1 and σ2 has a cylindrical structure. If |i| > 0 and |j| ≥ 2, then σ2

has infinite order and these actions have a shifted cylindrical structure as in Figure 4(b). When
σi1 = σ2 for some i, then we say that these actions form a linear lattice as in Figure 4(c).

If both σ1 and σ2 have finite order, then these actions define a torus as in Figure 4(d). In
particular when σi1 = σ2, we say that the actions form a circular lattice. Observe that when
X = Cn where n is prime, σ1 and σ2 automatically generate a circular lattice.

To obtain a contradiction, we choose c1 and c2 subject to a specified set of criteria. We then
prove that σ1 and σ2 cannot coexist with their given color-preserving properties. This contradicts
the assumption that every extension of c1 or c2 permits a color-preserving reflection.

4 The Arrangement of Blanks

In this section we will assume that the set W satisfies some additional geometric conditions. These
conditions guarantee the existence of an element w0 ∈ W such that the reflection about w0 maps
elements in W \ {w0} to elements not in W . Our main theorems follow by demonstrating the
existence of a subset of W satisfying these special properties.

Let X be the real line, the unit circle, or a cycle. Every cycle has a faithful embedding into the
circle, so we will use the image of such an embedding. Thus every translation can be expressed
as x 7→ x + α for some real number α ∈ (0, 1). Given a set W ⊂ X and a real number α, define
W + α = {w + α : w ∈ W}.
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w0

τR τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τB

σ

(a) Infinite Blue Case, |σ| =∞ and τR(w0) = σk(w0) for k ≥ 1.

w0

τR

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

σ

(b) Infinite Red Case, |σ| =∞ and τR(w0) = σ−k(w0) for k ≥ 1.

w0

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

σ

(c) Doubly Infinite Case, |σ| =∞ and τR(w0) 6= σk(w0) for k ∈ Z.

w0

τR

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τR
τB

τB

σ

(d) Finite Case, |σ| <∞.

Figure 3: The different traversals of σ.
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w0
σ1

σ2

(a) A lattice when |σ1| =∞ and σi
1 6= σj

2 for all i, j 6= 0.

w0
σ1

σ2

(b) A cylindrical lattice when |σ1| =∞ and σ2
1 = σ3

2 .

w0 σ1

σ2

(c) A linear lattice when |σ1| =∞ and σ2 = σ2
1 .

w0

(d) A toroidal lattice when |σ1| <∞.

Figure 4: The translations σ1 and σ2 form lattices of different kinds.
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Hypothesis (Divisibility Condition). Assume that W satisfies (W + i
k
) ∩ W = ∅ for all k ∈

{2, 3, 4, 5} and all i ∈ {1 . . . , k − 1}.

We will prove the following theorem.

Theorem 7. If W ⊂ X with |W | = 4 satisfies the Divisibility Condition, then every precoloring
c : X \W → {R,B} extends to a distinguishing 2-coloring of X.

Note that not every choice of W will satisfy the divisibility condition. However, we will show
later in Lemma 13 that when X is the unit circle or a cycle, if W ⊂ X and |W | ≥ 16, then there
exists a 4-element subset of W that satisfies the condition. Therefore, Theorem 7 and Lemma 13
imply Theorem 4.

Observe that for any distinguishing coloring c of R and any nonzero real number α, the coloring
c′(x) = c(αx) is also distinguishing. Further note that if W ⊂ R with |W | <∞ does not satisfy the
divisibility condition, then there exists a nonzero α such that the set W ′ = {αw : w ∈ W} satisfies
the divisibility condition. Thus, if c : R \W → {R,B} is a precoloring, then any distinguishing
extension of the precoloring c′ : R\W ′ → {R,B} defined by c′(x) = c(αx) induces a distinguishing
extension of c. Therefore, Theorem 7 also implies Theorem 1.

Observation 1. Let W satisfy the Divisibility Condition and let |W | ≤ 4. If σ is a translation,
then every σ-orbit contains at least one element not in W . If σ has order at least 3, then every
σ-orbit contains at least two elements not in W .

Lemma 3. If W ⊂ X has |W | = 4 and satisfies the Divisibility Condition, then there exists an
element w0 ∈ W such that the reflection τw0 about w0 maps all elements in W \ {w0} to elements
not in W .

Proof. If X = R, then set w0 = minW . If X = Cn, we may assume that W ⊂ R/Z by using the
faithful embedding of Cn into R/Z, and so we assume that X = R/Z. Let W = {x1, x2, x3, x4}
labeled in clockwise order, and without loss of generality assume that x1 = 0. Assume for the
purposes of obtaining a contradiction that τxi maps an element of W \ {xi} to an element of
W \ {xi} for all xi ∈ W .

If τx1 : x2 → x4, then x2 = α and x4 = 1−α for some α ∈ (0, 1/2). Since α 6= 1/3, we conclude
that τx2(x1) 6= x4. Therefore τx2(x3) ∈ {x1, x4}. By symmetry τx4(x3) ∈ {x1, x2}. Therefore
x3 ∈ {2α, 3α} ∩ {1 − 2α, 1 − 3α}. Since 1 = x3 + (1 − x3), we conclude that 1 ∈ {4α, 5α, 6α}.
By the Divisibility Condition, we conclude that α = 1/6. However, in this case, x3 = 1/2,
contradicting the Divisibility Condition. Therefore we may assume that τxi(xi+1) 6= xi−1 for all
i ∈ [4] with indices taken modulo 4.

Now, without loss of generality, assume that τx1 : x2 → x3. Thus x2 = α and x3 = 1 − α for
some α ∈ (0, 1/2). By the Divisibility Condition, α 6= 1/3, so τx3(x2) 6= x1. Since x3 ∈ (1/2, 1) and
x4 ∈ (x3, 1) it follows that τx3(x4) 6= x1. Therefore τx3(x2) = x4, and by the previous paragraph,
we reach a contradiction. �

Let c : X \W → {R,B} be a precoloring of X \W and assume that c does not extend to a
distinguishing coloring of X. Let c1 be an extension of c to X \ {w0}.
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Lemma 4. Let W ⊂ X satisfy the Divisibility Condition with |W | = 4. Let w0 be an element
in W such that τw0 maps elements in W \ {w0} to elements not in W . There exist at most two
forbidden extensions of c to X \ {w0}.

Proof. Since τw0 sends elements in W \ {w0} to elements not in W , the only extension that might
permit τw0 is the coloring c(w) = c(τw0(w)) for all w ∈ W − w0.

Assume that c1 and c2 are two distinct extensions of c that permit translations γ1 and γ2,
respectively, defined by γ1 : x 7→ x+α1 and γ2 : x 7→ x+α2 for some nonzero real numbers α1 and
α2. Let w ∈ W such that c1(w) 6= c2(w). For each i ∈ {1, 2}, define Oiw to be {γji (w) : j ∈ Z}, the
orbit of w under γi. If O1

w = O2
w then O1

w ⊂ W , since the color of O1
w under c1 must disagree with

the color of O2
w under c2. This follows because γ1 preserves c1, so c1(w) = c1(x) for all x ∈ Ow, and

γ1 preserves c2, so c2(w) = c2(x) for all x ∈ Ow. Therefore 2 ≤ |Ow| ≤ 4, violating the Divisibility
Condition. Thus, if γ1 and γ2 have finite orders (hence X 6= R), then they have distinct orders.

Suppose that γ1 has order 2 and γ2 has even order. Therefore w + 1
2

is in both the γ1-orbit
and γ2-orbit of w, and by the Divisibility Condition w + 1

2
/∈ W . Therefore c1(w) = c1(w + 1

2
) =

c2(w + 1
2
) = c2(w), a contradiction.

In the remaining cases, we assume without loss of generality that γ1 has order at least 3 and
γ2 either has order 2 or order greater than the order of γ1. Thus, for all γ1-orbits O, we have that
|O| ≥ 3, O is monochromatic in c1, and γ2(O) ∩ O = ∅. If the order of γ1 is at most 5, then
|O ∩W | ≤ 1 and |γ2(O) ∩W | ≤ 1 by the Divisibility Condition. Therefore there is x ∈ O such
that x and γ2(x) are not in W , and both O and γ2(O) are the same color under c1. If γ1 has order
at least 6, then there are at least six pairs of the form (x, γ2(x)) where x ∈ O, so there is x ∈ O
such that x and γ2(x) are not in W . Therefore O and γ2(O) are the same color in under c1. It
then follows that for all integers k, the orbits O and γk2 (O) are the same color under c1.

By Observation 1, there is a value `2 such that γ`22 (w) /∈ W . Again, let Ow be the γ1-orbit of
w, and note that Ow and γ`22 (Ow) have the same color under c1. Therefore,

c1(w) = c1(γ`22 (w)) = c2(γ`22 (w)) = c2(w),

a contradiction. �

5 Proofs of the Main Theorems

In this section, we will complete the proofs of Theorem 1, 3, and 4 by proving Theorem 7.
Let W be a set of four elements in X satisfying the Divisibility Condition, and let w0 ∈ W be

the element guaranteed by Lemma 3. Let c : X \W → {R,B} be a precoloring of X \W . We use
a sequence of extremal choices to extend c to a coloring c1 of X \ {w0}. We then select a subset
W ′ ⊆ W \ {w0} and obtain the coloring c2 by changing the colors of the elements in W ′. Our
choices will guarantee that both c1 and c2 are not the (at most) two forbidden colorings guaranteed
by Lemma 4. By assumption, neither c1 nor c2 extends to a distinguishing coloring, and we then
use Fact 6 to derive a contradiction.

Suppose that c1 is a non-forbidden extension of c to X \ {w0}. Let O0 be the orbit of w0 under
the rotation σ1 generated by c1. Let OR

0 be the set of elements in O0 colored red by c1 and let OB
0

be the set of elements in O0 colored blue by c1.
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Hypothesis (Selection criteria for c1). Among the non-forbidden extensions of c to X \ {w0},
select c1 so that the following conditions are satisfied:

(C0) |O0| is maximum.

(C1) Subject to (C0), if c′ is a nonforbidden extension of c to X \ {w0} and Oc′ is the orbit of
w0 under the action of the rotation generated by c′, then O0 6⊂ Oc′.

(C2) Subject to (C0) and (C1), min{|OR
0 |, |OB

0 |} is maximum.

Note that these conditions are satisfied by at least one coloring since there are a finite number
of extensions of c to X \ {w0}. We now discuss some structural relationships between the rotation
σ1 and the locations of the elements of W subject to the selection hypothesis.

Observation 2. Since the reflection about w0 sends all elements of W \ {w0} to elements not in
W , we have that

1. there is at most one element of W among σ1(w0) and σ−1
1 (w0), and

2. there is at most one element of W among σ1(w0) + 1
2

and σ−1
1 (w0) + 1

2
.

Lemma 5. If min{|OR
0 |, |OB

0 |} <∞, then τ
(1)
R (w0) and τ

(1)
B (w0) are not both in W . In particular,

τ
(1)
R (w0) /∈ W if |OR

0 | < |OB
0 | − 1 and τ

(1)
B (w0) /∈ W if |OB

0 | < |OR
0 | − 1.

Proof. If |OR
0 | = |OB

0 | < ∞, then τw0(τ
(1)
R (w0)) = τ

(1)
B (w0), and the statement follows by the

definition of w0. If
∣∣|OR

0 | − |OB
0 |
∣∣ = 1, then X 6= R and one of τ

(1)
R (w0) or τ

(1)
B (w0) is equal to

w0 + 1
2
. The element w0 + 1

2
is not a blank by the Divisibility Condition.

Otherwise, suppose that |OR
0 | < |OB

0 | − 1 and hence |OR
0 | <∞; the case when |OB

0 | < |OR
0 | − 1

follows by a similar argument. If τ
(1)
B (w0) ∈ W , then let c′ be the coloring that matches c1 with the

exception that c′(τ
(1)
B (w0)) = R. Observe that O0 is the only σ1-orbit that is nonmonochromatic

under c′. Let τ ′ be a reflection and σ′ be a rotation. Note that τ ′(O0) and σ′(O0) are both σ1-
orbits. Since at least half of the elements in O0 are blue under c′, the σ′-orbit of σ1(w0) contains
a blue element under c′, and hence c′ does not permit σ′. Since c′(σ1(w0)) 6= c′(σ−1

1 (w0)), c′ does
not permit τw0 and thus c′ is not forbidden.

Therefore, the two extensions of c′ to w0 only permit reflections, call them τ ′R and τ ′B when

c′(w0) = R and c′(w0) = B, respectively. Observe that τ ′R(w0) = τ
(1)
B (w0) and τ ′B(w0) = σ1(τ

(1)
B (w0)).

Thus τ ′B ◦ τ ′R = σ1, so σ1 is the rotation generated by c′. However, O0 has more red elements under
c′ than c1, contradicting (C2) in the selection criteria for c1. �

We define a set W ′ ⊆ W \ {w0} depending on the number of elements of each color in O0 as
follows.

Hypothesis (Selection of W ′).

1. If {τ (1)
R (w0), τ

(1)
B (w0)} ⊆ W , then let W ′ = {τ (1)

R (w0), τ
(1)
B (w0)}.
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2. If {τ (1)
R (w0), τ

(1)
B (w0)} * W and min{|OR

0 |, |OB
0 |} > 1, then select

w′ ∈ W \ {w0, σ1(w0), σ−1
1 (w0), τ

(1)
R (w0), τ

(1)
B (w0)},

and let W ′ = {w′}.

3. If {τ (1)
R (w0), τ

(1)
B (w0)} * W and min{|OR

0 |, |OB
0 |} = 1, then select

w′ ∈ W \
{
w0, σ1(w0), σ−1

1 (w0), τ
(1)
R (w0), τ

(1)
B (w0), σ1(w0) +

1

2
, σ−1

1 (w0) +
1

2

}
,

and let W ′ = {w′}.

We claim that the above choice is well-defined. If {τ (1)
R (w0), τ

(1)
B (w0)} is not a subset of W

and min{|OR
0 |, |OB

0 |} > 1, then such an element w′ exists by Observation 2 and Lemma 5. If

min{|OR
0 |, |OB

0 |} = 1, then either σ1(w0) = τ
(1)
R (w0) or σ−1

1 (w0) = τ
(1)
B (w0), and by Lemma 5 there

is at most one blank among {σ1(w0), τ
(1)
R (w0), τ

(1)
B (w0), σ−1

1 (w0)}. Furthermore, Observation 2
implies there is at most one blank among σ1(w0) + 1

2
and σ−1

1 (w0) + 1
2
, and hence the choice for w′

is possible.
Define c2 to be the coloring obtained from c1 by changing the colors of the elements in W ′. We

will show that c2 is not forbidden.

Lemma 6. The coloring c2 does not permit the translation of order 2.

Proof. Let γ be the translation of order 2, and hence X 6= R. Suppose that c2 permits γ. Fix
c2(w0) such that γ preserves c2; for this proof, let c1(w0) = c2(w0). Consider cases based on how
W ′ was selected.

Suppose W ′ = {τ (1)
R (w0), τ

(1)
B (w0)}, which implies that |OR

0 | = |OB
0 | =∞ by Lemma 5. There-

fore, O0 and the σ1-orbit containing τ
(1)
R (w0) are the two nonmonochromatic σ1-orbits under c2.

Since |O0| =∞, we have that γ(O0) is a distinct σ1-orbit and hence γ(τ
(1)
R (w0)), γ(τ

(1)
B (w0)) ∈ O0.

Recall σ1(τ
(1)
R (w0)) = τ

(1)
B (w0). Hence c2(σ−1

1 (τ
(1)
R (w0))) = R, c2(τ

(1)
R (w0)) = B, and c2(σ1(τ

(1)
R (w0))) =

R. There does not exist an integer i such that c2(σi−1
1 (w0)) = R, c2(σi1(w0)) = B, c2(σi+1

1 (w0)) = R,
and hence c2 does not permit γ.

We may now assume that {τ (1)
R (w0), τ

(1)
B (w0)} * W and W ′ = {w′}. Observe that c1(σ−1

1 (w′)) =
c1(w′) = c1(σ1(w′)), but c2(σ−1

1 (w′)) 6= c2(w′) and c2(w′) 6= c2(σ1(w′)). Let x = γ(w′) =
w′ + 1

2
. Since |σ1| ≥ 3, we conclude that w′ /∈ {σ−1

1 (x), x, σ1(x)} and c1(y) = c2(y) for all
y ∈ {σ−1

1 (x), x, σ1(x)}. Therefore, c1(σ−1
1 (x)) 6= c1(x) and c1(x) 6= c1(σ1(x)). This implies that

x ∈ O0 and x is the only element in O0 of color c1(x) under c1. Hence min{|OR
0 |, |OB

0 |} = 1 and
γ(w′) ∈ {σ1(w0), σ−1

1 (w0)}. But this implies that w′ ∈
{
σ1(w0) + 1

2
, σ−1

1 (w0) + 1
2

}
, contradicting

our choice of w′. �

The following technical lemma will be used extensively.

Lemma 7. Let γ be a translation such that

1. γ has order at least 3,
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2. the γ-orbits of σ−1
1 (w0), w0, and σ1(w0) are distinct, and

3. γ preserves c2 on the γ-orbits of σ−1
1 (w0) and σ1(w0).

For j ∈ {−1, 0, 1}, let Sj be the γ-orbit of σj1(w0). If 1 ≤ i < |γ|, then

1. |{γi(σ1(w0)), γi(σ−1
1 (w0))} ∩W ′| ≥ 1,

2. |W ′| ≥ |γ| − 1,

3. γ has order exactly 3,

4. W ′ ⊂ S−1 ∪ S1, and

5. W ′ = {τ (1)
R (w0), τ

(1)
B (w0)}.

Proof. If {γi(σ1(w0)), γi(σ−1
1 (w0))} ∩ W ′ = ∅ for some i ∈ [|γ| − 1], then c1(γi(σ−1

1 (w0))) = B
and c1(γi(σ1(w0))) = R. Therefore, σ2

1 maps the blue element γi(σ−1
1 (w0)) to the red element

γi(σ1(w0)) under c1. By Fact 6, we conclude that γi(σ−1
1 (w0)) = σ−1

1 (w0) and γi(σ1(w0)) =
σ1(w0), contradicting the assumption that 1 ≤ i ≤ |γ| − 1. Therefore c1(γi(σ1(w0))) = B or
c1(γi(σ−1

1 (w0))) = R, and consequently at least one of these elements must be in W ′, proving
conclusion 1. Conclusions 2–4 follow directly from conclusion 1 and Lemma 6. Conclusion 5
follows since {τ (1)

R (w0), τ
(1)
B (w0)} is the only choice of W ′ that has two elements. �

Lemma 8. c2 is not forbidden.

Proof. The reflection about w0 maps the red element σ1(w0) to the blue element σ−1
1 (w0), and

hence c2 does not permit τw0 . Suppose c2 permits a translation γ. By Lemma 6, γ has order at
least 3. Since γ preserves c2 and σ1(w0), σ−1

1 (w0) /∈ W ′, the γ-orbits of σ1(w0) and σ−1
1 (w0) are

distinct, and hence also are distinct from the γ-orbit of w0. Therefore Lemma 7 applies to γ, so γ
has order exactly 3 and W ′ = {τ (1)

R (w0), τ
(1)
B (w0)}.

If γ(O0) 6= O0, then O0, γ(O0), γ2(O0) are distinct. Since there are at most two nonmonochro-
matic σ1-orbits under c1, we assume without loss of generality that γ(O0) is monochromatic under
c1 (since c2 also permits γ−1). However, W ′∩γ(O0) = ∅ and therefore either the γ-orbit of σ1(w0)
or the γ-orbit of σ−1

1 (w0) is not monochromatic under c2, a contradiction. �

Let σ2 be the rotation generated by c2 (as in Fact 6). We will demonstrate that σ2 does not
satisfy Fact 6 under c2.

Lemma 9. |σ2| <∞.

Proof. Suppose |σ2| =∞. By (C0), we also have that |σ1| =∞. For i ∈ Z, let Si be the σ2-orbit
of σi1(w0). For any w ∈ W ′, c2(w) 6= c2(σ1(w)) and hence σ2 6= σ1. Since σ−1

1 (w0) /∈ W ′, we have
that σ2 6= σ−1

1 . Therefore, S0 /∈ {S1, S−1}.
Suppose that S1 6= S−1 and hence at least one of S1 or S−1 is monochromatic under c2. If

min{|OR
0 |, |OB

0 |} = ∞, then |S1 ∩ O0| = |S−1 ∩ O0| = 1 and hence for some ` ≥ 1, σ`2(O0) is
monochromatic under c2. However, there are now an infinite number of integers k > 0 such that
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c2(σk1(w0)) = R and c2(σ−k1 (w0)) = B, so c2(σ`2(σk1(w0))) 6= c2(σ`2(σ−k1 (w0))), a contradiction. Thus
min{|OR

0 |, |OB
0 |} < ∞ and therefore S0 is the only nonmonochromatic σ2-orbit under c2. This

implies that S1 and S−1 are monochromatic under c2, so Lemma 7 applies and |σ2| = 3.
Thus S1 = S−1. Since σ1(w0), σ−1

1 (w0) ∈ S1, then S1 is not monochromatic and thus there are
two nonmonochromatic σ2-orbits under c2. Hence there are an infinite number of red elements
and an infinite number of blue elements in both S0 and S1 under c2. Thus by (C0)–(C2), |OR

0 | =
|OB

0 | = ∞. Let i ∈ Z be such that σi2(σ1(w0)) = σ−1
1 (w0); note σi2 = σ−2

1 and i > 0 by Fact 6.
Also by Fact 6, c2(σ−`2 (w0)) = B for all ` ≥ 1. However, there exists an integer k > 0 such that
σ−ik2 (w0) /∈ W ′ and hence for ` = ik we have

B = c2(σ−`2 (w0)) = c2(σ−ik2 (w0)) = c1(σ−ik2 (w0)) = c1(σ2k
1 (w0)) = R,

a contradiction. �

Theorem 1 now follows directly from Lemma 9.

Theorem 1. extD(R) = 4.

Proof of Theorem 1. Let W ⊂ R be a set of size four, and let w0 = minW . Thus τw0 sends all
elements of W \{w0} to elements not in W . Let c : R\W → {R,B} be a precoloring of R\W , and
let c1 and c2 be the extensions of c defined by the selection criteria (C0)–(C2) and the definition
of W ′. The coloring c1 is not forbidden by choice, and c2 is not forbidden by Lemma 8. Lemma 9
implies that σ2, the translation generated by c2, satisfies |σ2| <∞. However, all translations of R
are of infinite order, a contradiction. Therefore there is a distinguishing extension of c. �

For the remainder of the paper, we assume that X 6= R. First we will show that if |σ1| = ∞,
then there is a distinguishing extension of c to X.

Lemma 10. |σ1| <∞.

Proof. Suppose otherwise that |σ1| = ∞. Observe that σi1 = σj2 if and only if i = 0 and |σ2|
divides j. Thus, the σ2-orbits of σ−1

1 (w0), w0, and σ1(w0) are distinct. Since |σ2| < ∞, there
is exactly one nonmonochromatic σ2-orbit under c2 and hence Lemma 7 applies, |σ2| = 3, and

W ′ = {τ (1)
R (w0), τ

(1)
B (w0)}. The orbits O0,O1,O2 are distinct σ1-orbits, and hence W ′ is disjoint

from Oi for some i ∈ {1, 2}. Thus Oi is monochromatic under both c1 and c2, but

B = c2(σ−1
1 (w0)) = c2(σi2(σ−1

1 (w0))) = c2(σi2(σ1(w0))) = c2(σ1(w0)) = R,

a contradiction. �

We now have that |σ2| ≤ |σ1| < ∞. Observe that each σi is a rotation about the circle
x 7→ x + j

|σi| for some j relatively prime to |σi|. Therefore, |σ1| = |σ2| if and only if σ1 generates
σ2 and vice-versa. We want to show that σ2 is generated by σ1.

Lemma 11. |σ1| = |σ2| and hence σ1 and σ2 generate each other.
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Proof. First note that by the extremal choice (C0), |σ2| = |σ1| if and only if σ2 generates σ1. Now
suppose that |σ2| < |σ1|. Let Sj be the σ2-orbit of σj1(w0). Since |O0| = |σ1| > |σ2| = |S0|, the
σ2-orbits S0 and S1 are distinct; similarly S0 and S−1 are distinct. Since |σ2| is finite, S0 is the
only nonmonochromatic σ2-orbit under c2. Therefore, S1 and S−1 are monochromatic under c2

and S−1 6= S1 since c2(σ−1
1 (w0)) 6= c2(σ1(w0)). However, since |OR

0 |, |OB
0 | < ∞, Lemmas 5 and 7

imply that S−1 = S1, a contradiction. �

We have now verified that σ1 and σ2 are both finite and generate each other. Observe that this
is a trivial statement in the case that X is a cycle of prime order. We finish the proof by showing
that σ1 and σ2 violate either Fact 6 or the extremal choices.

For all remaining cases, we will assume that |OR
0 | ≤ |OB

0 |. The other case is symmetric by
swapping colors and possibly negating the exponents on σ1. The following lemma completes the
proof of Theorem 7.

Lemma 12. If c1 and c2 are selected by the extremal choices (C0)–(C2) and the definition of W ′,
then there exists a distinguishing coloring of X.

Proof. By Lemma 11, σ1 and σ2 generate each other. Since |OR
0 |, |OB

0 | < ∞, Lemma 5 implies
that W ′ = {w′}. This further implies that w′ ∈ O0, and since w0 ∈ O0 \ {w′}, the Divisibility
Condition implies that |O0| ≥ 6. Let ` be the integer minimizing |`| such that σ2 = σ`1. Recall
that σ−1

1 (w0), σ1(w0) /∈ W ′ and thus c2(σ−1
1 (w0)) = B and c2(σ1(w0)) = R.

Suppose first that ` ∈ {1, . . . , |OR
0 |}. Thus c1(σ`−1

1 (w0)) = R and c1(σ1−`
1 (w0)) = B. Since

σ2({σ1−`
1 (w0), σ−1

1 (w0)}) = {σ1(w0), σ`−1
1 (w0)} and at most one of σ`−1

1 (w0) and σ1−`
1 (w0) is equal

to w′, and thus σ2 sends a blue element to a red element under c2, contradicting Fact 6.
Now suppose that −` ∈ {1, . . . , |OR

0 |}. Thus c1(σ`−1
1 (w0)) = B and c1(σ1−`

1 (w0)) = R. Since
σ2({σ−1

1 (w0), σ1−`
1 (w0)}) = {σ`−1

1 (w0), σ1(w0)} and at most one of σ`−1
1 (w0) and σ1−`

1 (w0) is equal
to w′, and thus σ2 sends a blue element to a red element under c2, contradicting Fact 6.

Therefore we may assume that |OR
0 | < |`| ≤ b

|σ1|
2
c. For all x ∈ OR

0 , the element σ−1
2 (x) is blue

under c1. Thus |OR
0 | = 1, but then there are two red elements in O0 (which is the σ2-orbit of w0)

under c2, violating extremal choice (C2). �

Observe that the divisibility condition holds for any set W ⊂ V (Cn) when the smallest prime
divisor of n is at least 7, so Theorem 3 follows immediately from Theorem 7.

Theorem 3. If the smallest prime divisor of n is at least 7, then extD(Cn) = 4.

In the other cases, we must start with a larger set of blanks.

Lemma 13. Let W ⊂ R/Z be a set with |W | ≥ 16. There exists a set W ′ ⊂ W where |W ′| = 4
and W ′ satisfies the Divisibility Condition.

Proof. Split the circle into five intervals given by [ i
5
, i+1

5
) for i ∈ {0, . . . , 4}. By the pigeonhole

principle, there are at least four elements of W in one of these intervals. This set satisfies the
Divisibility Condition. �

17



Note that Theorem 7 and Lemma 13 imply Theorem 4.

Theorem 4. extD(R/Z) ≤ 16.

Observe that the set of 15 elements given by { i
15

: 0 ≤ i ≤ 14} contains no four elements
that satisfy the Divisibility Condition, so Theorem 4 is the best upper bound that is implied by
Theorem 7. Further, we get the following upper bound on extD(Cn) for general n. Let χn(i) be
the indicator function that equals 1 if and only if i divides n.

Corollary 8. Let n ≥ 6. Then extD(Cn) ≤ 3 (1 + χn(2) + 2χn(3) + 2χn(4) + 4χn(5)) + 1.

Proof. Let W ⊂ V (Cn) have size 3(1 + χn(2) + 2χn(3) + 2χn(4) + 4χn(5)) + 1. For each w ∈ W ,
there are at most χn(2)+2χn(3)+2χn(4)+4χn(5) elements in W ∩{w+ i

k
: 1 ≤ i < k, 2 ≤ k ≤ 5}.

Iteratively select a subset W ′ = {w1, w2, w3, w4} ⊂ W of size four where w` 6= wj + i
k

for all ` > j
and 1 ≤ i < k ≤ 5. This restriction removes at most 1+χn(2)+2χn(3)+2χn(4)+4χn(5) elements
from W in each of the first three selections of w1, w2, and w3. At least one element remains to
select w4. The set W ′ satisfies the Divisibility Condition and hence any coloring on V (Cn) \W
extends arbitrarily to V (Cn) \W ′ and can be distinguished using Theorem 12. �

6 Future Work

In addition to resolving Conjectures 2 and 5, we pose the following questions for future study.

Problem 9. Determine extD(Rk) for k ≥ 2.

Problem 10. Determine extD(Sd) for d ≥ 2.

Suppose W ⊂ Sd is a set of blanks and c : Sd \W → {R,B} is a 2-coloring of Sd \W that
does not extend to a distinguishing coloring of Sd. Observe that W ′ = W ∪ {0} ⊂ Rd+1 is a set of
blanks and

c′(x) =

{
c(x) if x ∈ Sd,
R otherwise

is a 2-coloring of Rd+1 \W that does not extend to a distinguishing coloring of Rd+1. Therefore,
extD(Sd) < extD(Rd). This, together with Lemma 2 and the observation that the 3-dimensional
cube has a faithful embedding into S2, gives rise to the following conjectures, the first of which
also follows from our conjecture that extD(S1) = 6.

Conjecture 11. extD(R2) = 7.

Conjecture 12. extD(S2) = 9.

Conjecture 13. extD(R3) = 10.

Finally, proper coloring and list-coloring versions of the distinguishing number were introduced
in [20] and [21], respectively. We feel that studying these distinguishing parameters through the
lens of precoloring extensions would be an interesting direction for further inquiry, in line with the
broader precoloring extension literature discussed in the introduction.
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