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Abstract

Understanding the structure of a graph along with the structure of its subgraphs

is important for several problems in graph theory. Two examples are the Recon-

struction Conjecture and isomorph-free generation. This paper raises the question

of which pairs of groups can be represented as the automorphism groups of a graph

and a vertex-deleted subgraph. This, and more surprisingly the analogous question

for edge-deleted subgraphs, are answered in the most positive sense using concrete

constructions.

1 Introduction

The Reconstruction Conjecture of Ulam and Kelley famously states that the isomorphism
class of all graphs on three or more vertices is determined by the isomorphism classes of
its vertex-deleted subgraphs (see [GH69] for a survey of classic results on this problem).
A frequent issue when attacking reconstruction problems is that automorphisms of the
substructures lead to ambiguity when producing the larger structure.

This paper considers the relation between the automorphism group of a graph and
the automorphism groups of the vertex-deleted subgraphs and edge-deleted subgraphs.
If a group Γ1 is the automorphism group of a graph G, and another group Γ2 is the
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automorphism group of G−v for some vertex v, then we say Γ1 deletes to Γ2. This relation
is denoted Γ1 → Γ2. A corresponding definition for edge deletions is also developed. Our
main result is that any two groups delete to each other, with vertices or edges.

These relations also appear in McKay’s isomorph-free generation algorithm [McK98],
which is frequently used to enumerate all graph isomorphism classes. After generating a
graph G of order n, graphs of order n + 1 are created by adding vertices and considering
each G+v. To prune the search tree, the canonical labeling of G+v is computed, usually by
nauty, McKay’s canonical labeling algorithm [McK06,HR09]. Finding a canonical labeling
of a graph reveals its automorphism group. Since G was generated by this process, its
automorphism group is known but is not used while computing the automorphism group
of G + v. If some groups could not delete to the automorphism group of G, then they
certainly cannot appear as the automorphism group of G + v which may allow for some
improvement to the canonical labeling algorithm. The current lack of such optimizations
hints that no such restrictions exist, but this notion has not been formalized before this
paper.

One reason why this problem has not been answered is that the study of graph sym-
metry is very restricted, mostly to forms of symmetry requiring vertex transitivity. These
forms of symmetry are useless in the study of the Reconstruction Conjecture, as regu-
lar graphs are reconstructible. On the opposite end of the spectrum, almost all graphs
are rigid (have trivial automorphism group) [Bol01]. Graphs with non-trivial, but non-
transitive, automorphisms have received less attention.

Graph reconstruction and automorphism concepts have been presented together before
[Bab95,LS03]. However, there appears to be no results on which pairs of groups allow the
deletion relation. While our result is perhaps unsurprising, it is not trivial. The reader is
challenged to produce an example for Z2 → Z3 before proceeding.

For notation, G always denotes a graph, while Γ refers to a group. The trivial group
I consists of only the identity element, ε. All graphs in this paper are finite, simple, and
undirected, unless specified otherwise. All groups are finite. The automorphism group of
G is denoted Aut(G) and the stabilizer of a vertex v in a graph G is denoted StabG(v).

2 Definitions and Basic Tools

We begin with a formal definition of the deletion relation.

Definition 2.1. Let Γ1, Γ2 be finite groups. If there exists a graph G with |V (G)| � 3
and vertex v ∈ V (G) so that Aut(G) ∼= Γ1 and Aut(G− v) ∼= Γ2, then Γ1 (vertex ) deletes

to Γ2, denoted Γ1 → Γ2. Similarly, the group Γ1 edge deletes to Γ2 if there exists a graph
G and edge e ∈ E(G) so that Aut(G) ∼= Γ1 and Aut(G − e) ∼= Γ2. If a specific graph G

and subobject x give Aut(G) ∼= Γ1 and Aut(G − x) ∼= Γ2, the deletion relation may be

presented as Γ1
G−x−→ Γ2.

To determine the automorphism structure of a graph, vertices that are not in the same
orbit can be distinguished by means of neighboring structures. A useful gadget to make
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such distinctions is the rigid tree T (n), where n is an integer at least 2. Build T (n) by
starting with a path u0, z1, . . . , zn. For each i, 1 � i � n, add a path zi, xi,1, xi,2, . . . , xi,2i, ui

of length 2i+1. This results in a tree with n+1 leaves. Note that each leaf ui is distance
2i + 1 to a vertex of degree 3 (except for un, which is distance 2n + 2). Thus, the leaves
are in disjoint orbits and T (n) is rigid. Also, if any leaf ui is selected with i � 1, T (n)−ui

is rigid. This gives an example of the deletion relation I → I. For notation, let J be a
set and {Tj}j∈J be disjoint copies of T (n). Then ui(Tj) designates the copy of ui in Tj.
This is well-defined since there is a unique isomorphism between each Tj and T (n).

For any group Γ, a simple, unlabeled, undirected graph G exists with Aut(G) ∼= Γ
[Fru39]. The construction is derived from the well-known Cayley graph1. Define C(Γ)
to be a graph with vertex set Γ and complete directed edge set, where the edge (γ, β) is
labeled with γ

−1
β, the element whose right-multiplication on γ results in β. The auto-

morphism group of C(Γ) is Γ, and the action on the vertices follows right multiplication
by elements in Γ. That is, if γ ∈ Γ, the permutation σγ will take a vertex α to the vertex
αγ.

This directed graph with labeled edge sets is converted to an undirected and unlabeled
graph by swapping the labeled edges with gadgets. Specifically, order the elements of
Γ = {α1, . . . ,αn} so that α1 = ε. For each edge (γ, β), subdivide the edge labeled
αi = γ

−1
β with vertices x1, x2, and attach a copy Tγ,β of T (i) by identifying u0(Tγ,β) with

x1. Note that i � 2 in these cases, since αi �= ε. See Figure 1 for an example of this
process.

γ
αi �� β

(a) A directed edge labeled

αi.

T (i)

γ x1 x2 β

(b) An unlabeled undirected gad-

get.

Figure 1: Converting a labeled directed edge to an undirected unlabeled gadget.

Denote this modified graph C
�(Γ). We refer to it as the Cayley graph of Γ. Note that

the automorphisms of C
�(Γ) are uniquely determined by the permutation of the group

elements and preserve the original edge labels, since the trees T (i) identify the label αi

and have a unique isomorphism between copies. Hence, Aut(C �(Γ)) ∼= Aut(C(Γ)) ∼= Γ.

Lemma 2.2. Let Γ be a group and G = C
�(Γ). Then the stabilizer of the identity element

ε (as a vertex in G) is trivial. That is, StabG(ε) ∼= I.

Proof. Every automorphism of G is represented by right-multiplication of Γ. Hence, every
automorphism except the identity map will displace ε.

1In most uses of the Cayley graph, a generating set is specified. For simplicity, we use the entire group.
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3 Deletion Relations with the Trivial Group

Now that sufficient tools are available, we prove some basic properties.

Proposition 3.1. (The Reflexive Property) For any group Γ, Γ → Γ.

Proof. Let Γ be non-trivial, as the trivial case has been handled by the rigid tree T (n).
Let G be the Cayley graph C

�(Γ). Create a supergraph G
� by adding a dominating vertex

v with a pendant vertex u. Now, u is the only vertex of degree 1, and v is the only vertex
adjacent to u. Hence, these two vertices are distinguished in G

� from the vertices of G.
Removing v leaves G and the isolated vertex u. Thus, Γ is the automorphism group for
both G

� and G
� − v.

A key part of our final proof relies on the trivial group deleting to any group.

Lemma 3.2. For all groups Γ, I → Γ.

Proof. Let G = C
�(Γ). Let n = |Γ|. Order the group elements of Γ as α1, . . . ,αn. Create a

supergraph, G
�, by adding vertices as follows: For each αi, create a copy Tαi of T (2n) and

identify u0(Tαi) with the vertex αi in G (Here, 2n is used to distinguish these copies from
the edge gadgets). Add a vertex v that is adjacent to ui(Tαi) for each i. For each αi, the
leaf of Tαi adjacent to v distinguishes αi. Hence, no automorphisms exist in G

�. However,
G
� − v restores all automorphisms π from Aut(G) by mapping Tαi to Tπ(αi) through the

unique isomorphism.

Note that this proof uses a very special vertex that enforces all vertices to be distin-
guished. Before producing examples where deleting a vertex removes symmetry, it may
be useful to remark that such a distinguished vertex cannot be used.

Lemma 3.3. Let G be a graph and v ∈ V (G). Then, automorphisms in G that stabilize

v form a subgroup in the automorphism group of G− v. That is, StabG(v) � Aut(G− v).

Proof. Let π ∈ StabG(v). The restriction map π|G−v is an automorphism of G− v.

The implication of this lemma is removing a vertex with a trivial orbit cannot remove
automorphisms. However, we can remove all symmetry in a graph using a single vertex
deletion.

Lemma 3.4. For any group Γ, Γ → I.

Proof. Assume Γ �∼= I, since the reflexive property handles this case. Let G = C
�(Γ) and

n = |Γ|.
Let G1, G2 be copies of G with isomorphisms f1 : G → G1 and f2 : G → G2. Create

a graph G
� from these two copies as follows. For all elements γ in Γ, create a copy Tγ

of T (n) and identify u0(Tγ) with f1(γ) and un(Tγ) with f2(γ). Note that Aut(G�) ∼= Γ,
since no vertices from G1 can map to G2 from the asymmetry of the Tγ subgraphs, and
any automorphism of G1 extends to exactly one automorphism of G2.
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Any automorphism π of G
�− f1(ε) must induce an automorphism π|G2 of G2. But the

vertices of G1 must then permute similarly (by the definition π(f1(x)) = f1f
−1
2 πf2(x)).

Since f1(ε) is not in the image of π, π stabilizes f2(ε). Lemma 2.2 implies π must be the
identity map. Hence, Aut(G� − f1(ε)) ∼= I.

4 Deletion Relations Between Any Two Groups

We are sufficiently prepared to construct a graph to reveal the deletion relation for all
pairs of groups.

Theorem 4.1. If Γ1 and Γ2 are groups, then Γ1 → Γ2.

Proof. Assume both groups are non-trivial, since Lemmas 3.2 and 3.4 cover these cases.
Let G1 = C

�(Γ1). Then identify v1 ∈ V (G1) as the vertex corresponding to ε ∈ Γ1.
Note that StabG1(v1) ∼= I as in Lemma 2.2. Also by Lemma 3.2, there exists a graph

G2 and vertex v2 so that I
G2−v2−→ Γ2. Define ni = |Γi|. Order the elements of Γ1 as

α1,1, α1,2, . . . ,α1,n1 so that α1,1 = ε = v1.
We collect the necessary properties of G1, G2, v1, v2 before continuing. First, G1 has

automorphisms Aut(G1) ∼= Γ1 and v1 is trivially stabilized (StabG1(v1) ∼= I). Second, G2

is rigid (Aut(G2) ∼= I) but G2− v2 has automorphisms Aut(G2− v2) ∼= Γ2. The following
construction only depends on these requirements.

Let H1, . . . , Hn1 be copies of G2. Construct a graph G by taking the disjoint union of
G1, H1, . . . , Hn1 , and adding edges between α1,i and every vertex of Hi, for i = 1, . . . , n1.
Since Aut(Hi) ∼= I, the automorphism group of G cannot permute the vertices within
each Hi. However, the vertices of G1 can permute freely within Aut(G1) ∼= Γ1, since
Hi
∼= Hj for all i, j. Hence, Aut(G) ∼= Γ1.
When the copy of v2 in H1 is deleted from G, the automorphisms of H1 − v2 are Γ2.

However, the vertex v1 of G1 is now distinguished since it is adjacent to a copy of G2−v2,
unlike the other elements of Γ1 in G1 which are adjacent to a copy of G2. This means
the permutations of G1 must stabilize v1. Since StabG1(v1) = I, the only permutation
allowed on G1 is the identity. However, H1 − v2 has automorphism group Γ2. Hence,
Aut(G− v2) ∼= Γ2.

Figure 2 presents a visualization of the automorphisms in this construction before and
after the deletion. A very similar construction produces this general result for the edge
case.

Theorem 4.2. If Γ1 and Γ2 are groups, then there exists a graph G and an edge e ∈ E(G)

so that Γ1
G−e−→ Γ2.

Proof. Set ni = |Γi|. Let G1 = C
�(Γ1) with v1 corresponding to ε ∈ Γ1 and order the

elements of Γ1 similarly to the proof of Theorem 4.1.
Form G2 by starting with C

�(Γ2) and making a copy Tγ of T (2n2) for each element
γ ∈ Γ2, identifying γ ∈ V (C �(Γ2)) with u0(Tγ). Now, add an edge e between u2n2(T1)
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v1

(a) G with Aut G ∼= Γ1.

G

G  - v
G

G

1

2
2

2

v1

2

2

(b) G− v2 with Aut G− v2
∼= Γ2.

Figure 2: The vertex deletion construction.

and u2n2−1(T1). This distinguishes the element ε as a vertex in C
�(Γ2) and hence is

stabilized. So, Aut(G2) ∼= I and if e is removed all group elements are symmetric again,
so Aut(G2 − e) ∼= Γ2.

Notice that G1, G2, v1, e satisfy the requirements of the construction of G in Theorem
4.1. Hence, the same construction (with e in place of v2) provides an example of edge
deletion from Γ1 to Γ2.

Note that the graph produced for Theorem 4.2 can be used for the proof of Theorem
4.1 by subdividing e and using the resulting vertex as the deletion point.

5 Future Work

While the question posed in this paper is answered completely for the class of all graphs,
there remain questions for special cases. For instance, the automorphism groups of trees
are fully understood [Ser80]. Let GT be the class of groups that are represented by the
automorphism groups of trees and GF represented by automorphisms of forests2. The
constructions in this paper are not trees, so new methods will be required to answer the
following questions. If we restrict to trees, can any group in GT delete to any group in GF ?
Or, if we restrict to deleting leaves (and hence stay connected) can all pairs of groups in
GT delete to each other?

Another interesting aspect of our construction is that the resulting graphs are very
large, with the order of the graphs cubic in the size of the groups. Which of these relations
can be realized by small graphs? Can we restrict the groups that can appear based on the
order of the graph? The current-best upper bound on the order of a graph G with auto-
morphism groups isomorphic to a given group Γ is |V (G)| � 2|Γ| and Aut(G) ∼= Γ [Bab74].
This has particular application to McKay’s generation algorithm, where only “small” ex-
amples are usually computed (for example, all connected graphs up to 11 vertices were
computed in [McK97]). To demonstrate that this is not trivial, see Figure 3 for a graph
showing Z2 → Z3.

2An elementary proof shows that GT = GF .
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!

Figure 3: This graph G has Aut(G) ∼= Z2 and Aut(G− v) ∼= Z3.

While Theorem 4.1 shows that there exists a graph where some vertex can be deleted
to demonstrate the deletion relations, our constructions have many other vertices that
behave in very different ways when they are deleted. When relating to the Reconstruction
Conjecture, this raises questions regarding the combinations of automorphism groups that
appear in the vertex-deleted subgraphs. For instance, if the multiset of vertex-deleted
automorphism groups is provided, can one reconstruct the automorphism group? This
question only gives the groups, but not the vertex-deleted subgraphs. An example is that
n copies of Sn−1 must reconstruct to Sn, but it is unknown whether the graph is Kn or
nK1. Since Aut(G) = Aut(G), this ambiguity will always naturally arise. Can it arise in
other contexts? Is the automorphism group recognizable from a vertex deck?
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