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Abstract

Any finite group can be encoded as the automorphism group of an unlabeled simple graph.
Recently Hartke, Kolb, Nishikawa, and Stolee (2010) demonstrated a construction that allows
any ordered pair of finite groups to be represented as the automorphism group of a graph and a
vertex-deleted subgraph. In this note, we describe a generalized scenario as a game between a
player and an adversary: An adversary provides a list of finite groups and a number of rounds.
The player constructs a graph with automorphism group isomorphic to the first group. In
the following rounds, the adversary selects a group and the player deletes a vertex such that
the automorphism group of the corresponding vertex-deleted subgraph is isomorphic to the
selected group. We provide a construction that allows the player to appropriately respond to
any sequence of challenges from the adversary.

Automorphisms of graphs are incredibly unstable. The slightest perturbation of the graph
can greatly change the automorphism group. In this note, we show there exist graphs whose
automorphism groups can change dramatically under certain sequences of vertex deletions. We
consider undirected, unlabeled, and simple graphs, denoted F, G, or H, and finite groups, denoted
Γ. The automorphism group of a graph G is denoted Aut(G).

Frucht [3] proved that graphs have the ability to encode the structure of any finite group.

Theorem 1 (Frucht [3]). Let Γ be a finite group. There exists a graph G with Aut(G) ∼= Γ.

Hartke, Kolb, Nishikawa, and Stolee [4] proved that any ordered pair of finite groups can
be represented by a graph and a vertex-deleted subgraph. Their work was motivated by con-
sequences to the Reconstruction Conjecture (see Bondy [2]) and isomorph-free generation (see
McKay [5]).

Theorem 2 (Hartke, Kolb, Nishikawa, Stolee [4]). Let Γ0 and Γ1 be finite groups. There exists a graph
G and a vertex v ∈ V(G) such that Aut(G) ∼= Γ0 and Aut(G− v) ∼= Γ1.

There are two natural extensions of this process to a sequence Γ0, Γ1, . . . , Γk of finite groups
using two types of vertex deletions: single deletions or iterated deletions.
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Question. Let Γ0, Γ1, . . . , Γk be finite groups. Does there exist a graph G with vertices v1, . . . , vk ∈ V(G)
such that Aut(G) ∼= Γ0 and for all i ∈ {1, . . . , k},

1. (Single Deletions) Aut(G− vi) ∼= Γi?

2. (Iterated Deletions) Aut(G− v1 − · · · − vi) ∼= Γi?

In fact, both of these types of deletions can be combined in an even more general situation,
posed as the vertex deletion game between a player and an adversary:

The Vertex Deletion Game

Round 0:

Adversary: Selects finite groups Γ0, Γ1, . . . , Γk, and a number ` ≥ 1.

Player: Constructs a graph G0 with Aut(G0) ∼= Γ0.

Round j: (1 ≤ j ≤ `)

Adversary: Selects a group Γij ∈ {Γ1, . . . , Γk}.
Player: Selects a vertex vj ∈ V(Gj−1), defines Gj = Gj−1− vj, and asserts Aut(Gj) ∼= Γij .

Note that this game generalizes both single deletions (play the game with ` = 1) and iterated
deletions (play the game with ` = k, and the adversary selects Γij = Γj for all j ∈ {1, . . . , k}). By
carefully constructing G0, the player can survive ` rounds against the adversary.

Theorem 3 (Adversarial Iterated Deletions). Suppose the adversary selects Γ0, Γ1, . . . , Γk as finite
groups and integer ` ≥ 1 in Round 0. The player can construct a graph G0 with Aut(G0) ∼= Γ0 so that the
assertions Aut(Gj) ∼= Γij hold for all ` remaining rounds.

Instead of using the vertex deletion game, there is an equivalent statement of the previous
theorem using a sequence of alternating quantifiers.

Theorem 4 (Adversarial Iterated Deletions; alternate form). For all numbers k, ` ≥ 1 and finite groups
Γ0, Γ1, . . . , Γk, there exists a graph G0 such that Aut(G0) ∼= Γ0 and

∀i1 ∃v1 ∀i2 ∃v2 · · · ∀i` ∃v` ∀j, Aut(G0 − v1 − · · · − vj) ∼= Γij ,

where the domain of j is {1, . . . , `}, the domain of each ij is {1, . . . , k}, and the domain of each vj is
V(G0) \ {v1, . . . , vj−1}.

A group is trivial if it consists only of the identity element. For a graph G and vertex v ∈ V(G),
the stabilizer of v in G, denoted StabG(v), is the subgroup of Aut(G) given by permutations τ
where τ(v) = v.

Our starting point is the following lemma from [4].

Lemma 5 (Hartke, Kolb, Nishikawa, Stolee [4, Lemma 2.2]). For any finite group Γ, there is a con-
nected graph G and a vertex v ∈ V(G) where Aut(G) ∼= Γ and StabG(v) is trivial.

We now describe a gadget which will be used to build the full construction for Theorem 3.

Lemma 6. Let Γ be a finite group. There exists a graph H and two vertices x, y ∈ V(H) so that Aut(H)
is trivial, H − x is connected, Aut(H − x) ∼= Γ, and StabH−x(y) is trivial.
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Proof. By Lemma 5, there exists a connected graph G and a vertex y ∈ V(G) so that Aut(G) ∼= Γ
and StabG(y) is trivial. Let n = |V(G)| and order the vertices of G as V(G) = {v1, . . . , vn} and
v1 = y.

Let H be a graph with vertex set V(H) = {v1, . . . , vn} ∪ {u1, . . . , un} ∪ {x, z, w}. The graph H
has an edge vivj if and only if that edge is present in G. For every j ∈ {1, . . . , n}, the pair ujvj is an
edge. The vertex z is adjacent to all vertices vj for j ∈ {1, . . . , n}. The vertex x is adjacent to z, all
vertices vj for j ∈ {1, . . . , n} and adjacent to the vertices ui for i ∈ {2, . . . , n}. Finally, the vertex w
is adjacent only to x and z.

The only vertex of degree 1 in H is u1, so every automorphism of H stabilizes u1 and thus also
stabilizes v1. All vertices v1, . . . , vn have degree at least three and degree at most n + 1. The vertex
x is the only vertex of degree 2n + 1, so every automorphism of H stabilizes x. The vertex z is
the only vertex of degree n + 2, so every automorphism of H stabilizes z and hence also stabilizes
w. Other than w, the vertices u2, . . . , un are the only vertices of degree 2, so every automorphism
set-wise stabilizes {u2, . . . , un}. This implies that every automorphism of H set-wise stabilizes
{v1, . . . , vn} and hence restricting an automorphism of H to V(G) induces an automorphism of
G. However, every automorphism point-wise stabilizes v1. Since v1 = y and StabG(y) is trivial,
every automorphism of H must point-wise stabilize V(G). Thus the vertices u1, . . . , un are also
point-wise stabilized and the automorphism group of H is trivial.

Now consider H′ = H − x. The vertex z is the only vertex of degree n + 1, so every automor-
phism of H′ stabilizes z and w. Other than w, the only vertices of degree 1 are u1, . . . , un, so every
automorphism of H′ set-wise stabilizes {u1, . . . , un}. Since the vertices u1, . . . , un are adjacent
only to vertices in V(G), every automorphism of H′ set-wise stabilizes V(G). Hence, every auto-
morphism of H′ restricted to V(G) is an automorphism of G. Observe that every automorphism
σ ∈ Aut(G) extends to an automorphism of H by assigning σ(ui) = uj whenever σ(vi) = vj.
Thus, Aut(H − x) ∼= Aut(G) ∼= Γ.

Since the automorphisms of H − x correspond directly to automorphisms of G, observe that
StabH−x(y) is trivial.

We are now sufficiently prepared to prove the main theorem. The gadget from Lemma 6 has
two purposes:

1. “Reveal” symmetry: When x is deleted, the automorphism group Γ is revealed.

2. “Remove” symmetry: When y is stabilized within H − x, all non-trivial automorphisms of
H − x are removed.

Our construction for the graph G0 carefully places many copies of this gadget in such a way that
the player has access to a “revealing” vertex (x) that simultaneously stabilizes the “removing”
vertex (y) in the previous gadget. Therefore, we have a sequence of deletions which remove all
previous symmetry and reveal only the requested symmetry.

Proof of Theorem 3. Note that the case k = ` = 1 holds by Theorem 2. We assume that the groups
Γ1, . . . , Γk are distinct with respect to isomorphism.

By Lemma 6, for every i ∈ {0, 1, . . . , k} there is a graph Hi with vertices xi, yi ∈ V(Hi) such
that Aut(Hi) is trivial, Aut(Hi − xi) ∼= Γi, and StabHi−xi(yi) is trivial. For all i ∈ {0, . . . , k}, let
Oi be the orbit of yi in Hi − xi. Since the groups Γ1, . . . , Γk are pairwise non-isomorphic, then by
the construction of Lemma 6 the graphs H0, H1, . . . , Hk and H0 − x0, . . . , Hk − xk are all pairwise
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non-isomorphic. Also by the construction of Lemma 6, no graph Hi or Hi − xi has a dominating
vertex.

We construct the graph G0 by building graphs F0, F1, . . . , F` iteratively. Let F0 be the graph
given by taking H0 − x0 and adding vertices a0, b0 where a0 is adjacent to all vertices in H0 − x0
and b0 is adjacent to only a0. Let U0 = O0.

For all j ∈ {1, . . . , `}, we will build Fj by adding vertices and edges to Fj−1. During the process,
Fj−1 will remain an induced subgraph of Fj. For all vertices v ∈ Uj−1 and i ∈ {1, . . . , k}, add a copy

H(j,v)
i of Hi to Fj−1 and add edges from v to each vertex of H(j,v)

i . Let x(j,v)
i and y(j,v)

i denote the

copies of xi and yi in H(j,v)
i . Let O(j,v)

i be the copy of Oi within H(j,v)
i and define Uj = ∪v∈Uj−1 ∪

k
i=1

O(j,v)
i . Add vertices aj, bj where aj is adjacent to all vertices in V(Fj) \V(Fj−1) and the vertices aj−1

and bj. Figure 1 shows a visualization of this construction.
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Figure 1: An example of the construction of Fj from Fj−1 where k = 3.

Let G0 be F`. Observe that the vertices a0, . . . , a` induce a path, and the vertices b0, . . . , b` all
have degree 1. The vertices b0, . . . , b` are the only vertices of degree 1, so all automorphisms
of G0 set-wise stabilize {b0, . . . , b`} and hence set-wise stabilize {a0, . . . , a`}. Since all vertices in
{a0, . . . , a`} have distinct degrees, these vertices are point-wise stabilized by all automorphisms of
G0. Therefore, every set V(Fj) \ V(Fj−1) is set-wise stabilized by every automorphism of G0. In
particular, any automorphisms of G0 must set-wise stabilize the set V(F0)−{a0, b0}which induces
a copy of H0 − x0.

It remains to show that G0 satisfies the conditions of Theorem 3 by providing a strategy for the
player to respond to the adversary’s challenges. Informally, in the jth round the player will delete
a vertex from the jth layer (i.e. V(Fj) \V(Fj−1)), and this vertex will depend on the jth group, Γij ,
and the previous vertex-deletions. The previous vertex-deletion removed a copy of the vertex xij−1

from a copy of Hij−1 (or j = 1, i0 = 0, and x0 was never included in G0). To “remove” the symmetry
found in this copy of Hij−1 , we aim to stabilize its copy of yij−1 . We delete the vertex xij from the
copy of Hij in the neighborhood of this copy of yij−1 , which distinguishes it from all other vertices
in Uj−1 and hence the symmetry in Hij−1 − xij−1 is no longer available. Instead, we have removed
xij from a copy of Hij , revealing Aut(Hij − xij)

∼= Γij . Thus, the automorphisms allowed within Fj
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are exactly those in this copy of Hij − xij , and all vertices in F` \ Fj have their motion determined
by the action in Fj.

Back to the formal proof, we first show that we can localize our study of the automorphisms
of G0 − X for certain sets of vertices X.

Claim 7. Fix j ∈ {0, . . . , `} and X = {v1, . . . , vj} where vj′ ∈ V(Fj′) \ (V(Fj′−1) ∪Uj′ ∪ {aj′ , bj′}) for
all j′ ∈ {1, . . . , j}. Then Aut(G0 − X) ∼= Aut(Fj − X).

Proof of Claim 7: Observe that the vertices b0, . . . , b` remain the only vertices in G0 − X of degree
1, and the vertices a0, . . . , a` continue to have distinct degrees. Thus, the vertices a0, . . . , a` are
point-wise stabilized by Aut(G0 − X) and hence the sets V(Fi) \ V(Fi−1) are set-wise stabilized
by Aut(G0 − X). Specifically, the sets V(Fj′+1) \ V(Fj′) are set-wise stabilized by Aut(G0 − X)
for all j′ ∈ {j, . . . , ` − 1}. This implies that every automorphism in Aut(Fj′+1 − X) is also an
automorphism of Aut(Fj′ − X) when restricted to V(Fj′ − X). We will show that this map from
Aut(Fj′+1 − X) to Aut(Fj′ − X) is a bijection for all j′ ∈ {j, . . . , ` − 1}, implying there is natural
bijection between Aut(F` − X) and Aut(Fj − X).

Every vertex u ∈ V(Fj′+1 − X) \V(Fj′) is contained in H(j′+1,v)
i for some vertex v ∈ Uj′ and i ∈

{1, . . . , k}. Since V(H(j′+1,v)
i ) ∩ X = ∅, this subgraph H(j′+1,v)

i has no non-trivial automorphisms.
Therefore, for every automorphism σ of Fj′ −X, there is exactly one isomorphism of Fj′+1−X that

extends σ and maps V(H(j′+1,v)
i ) to V(H(j′+1,σ(v))

i ). Hence, the action of an automorphism on each
vertex u ∈ V(Fj′+1 − X) \ V(Fj′) is determined exactly by the action of the automorphism on the
vertices within V(Fj′ − X). Hence, the restriction map from Aut(Fj′+1 − X) to Aut(Fj′ − X) is a
bijection, proving the claim.

When X = ∅, the automorphism group of the subgraph F0 determines the automorphism
group of G0 − X. Since F0 − {a0, b0} ∼= H0 − x0, we have Aut(G0) ∼= Γ0.

For a list Γi1 , . . . , Γi` of groups selected from {Γ1, . . . , Γk}, define the vertices v1, . . . , v` and
u0, u1, . . . , v` where u0 = y0 and for j ∈ {1, . . . , `},

vj = x
(j,uj−1)

ij
, uj = y

(j,uj−1)

ij
.

Observe that the definition of vj and uj depends only on uj−1 and Γij , so this definition does not
violate any of the quantifiers in the statement of Theorem 4. Thus, the vertices v1, . . . , v` are valid
selections of vertex-deletions for the player in response to the adversary selecting Γi1 , . . . , Γi` in
order.

By induction on j, we verify that Aut(G0 − v1 − · · · − vj) ∼= Γij . We will require the stronger
induction hypothesis that all automorphisms of Fj − v1 − · · · − vj point-wise stabilize all vertices

except those in H
(j,uj−1)

ij
− vj.

Let j ∈ {1, . . . , `}. By Claim 7, Aut(G0− v1− · · ·− vj) ∼= Aut(Fj− v1− · · ·− vj). Since b0, . . . , bj
are the only vertices of degree 1, and they are only adjacent to a0, . . . , aj (which have different
degrees), the vertices a0, . . . , aj and b0, . . . , bj are point-wise stabilized by Aut(Fj − v1 − · · · − vj).
Thus, V(Fj−1) is set-wise stabilized by Aut(Fj− v1− · · · − vj). By induction (or that F0−{a0, b0} ∼=
H0 − x0 in the case j = 1), Aut(Fj−1 − v1 − · · · − vj−1) ∼= Γij−1 and all vertices in Fj−1 are point-

wise stabilized by Aut(Fj−1 − v1 − · · · − vj−1) except those in H
(j−1,uj−2)

ij−1
− vj−1 (for the case j = 1,
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Figure 2: An example sequence of deletions with k = 3 where the adversary selects Γ2, Γ1, Γ3.

use H0 − x0 instead of H
(j−1,uj−2)

ij−1
− vj−1). Observe that uj−1 is the copy of yij−1 in H

(j−1,uj−2)

ij−1
. Since

deleting vj from Fj− v1− · · · − vj creates a copy of Hij − xij in the neighborhood of uj−1, the vertex
uj−1 is distinguished from the other vertices in Uj−1. Thus, uj−1 is stabilized by all automorphisms
in Aut(Fj − v1 − · · · − vj). This implies that the automorphisms in Aut(Fj − v1 − · · · − vj) point-
wise stabilize all vertices in Fj−1. Finally, all vertices in V(Fj) \ V(Fj−1) are either contained in

H
(j,uj−1)

ij
− vj (in which case the automorphisms are given by Aut(Hij − xij)) or are contained in a

copy of Hi for some i ∈ {1, . . . , k} and Hi has no nontrivial automorphisms. Thus, all vertices of

Fj − v1 − · · · − vj are point-wise stabilized except those in H
(j,uj−1)

ij
− vj. Finally,

Aut(G0 − v1 − · · · − vj) ∼= Aut(Fj − v1 − · · · − vj) ∼= Aut(H
(j,uj−1)

ij
− vj) ∼= Γij .

The construction given in the above proof requires a large number of vertices and vertices of
high degree. While the gadget given by Lemma 6 can be built using O(|Γ| log2

2 |Γ| log2 log2 |Γ|)
vertices1, Babai [1] proved that for every finite group Γ there is a graph G with Aut(G) ∼= Γ
and |V(G)| ≤ 3|Γ|. Can graphs with O(|Γ|) vertices be used to satisfy Lemma 6? Also, the

1The construction of Lemma 5 from [4] has order O(|Γ|4), but can be replaced by a construction of Sabidussi [6] with
O(|Γ| log2 |Γ| log2 log2 |Γ|) vertices. Then, carefully applying the construction of Lemma 6 to Sabidussi’s construction,
the number of vertices is increased by a multiplicative factor of O(log2 |Γ|).
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constructions used here contain vertices of high degree. Does there exist a constant D so that
Theorem 3 is satisfied with the maximum degree of G0 at most D?
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