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Overview The Big Question

The Goal

Determine if certain combinatorial objects exist with given
structural or extremal properties.
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Examples:
1 Is there a projective plane of order 10?

(Lam, Thiel, Swiercz, 1989)

2 When do strongly regular graphs exist?
(Spence 2000, Coolsaet, Degraer, Spence 2006, many others)

3 How many Steiner triple systems are there of order 19?
(Kaski, Östergård, 2004)
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Overview The Big Question

Problems Tackled in This Thesis

1 Which numbers are representable as the number of chains in a
width-two poset?
(with Kupin, Reiniger)

2 Which colorings of {1, . . . , n} avoid monochromatic progressions?
(with Jobson, Kézdy)

3 How many edges can exist in a graph with p perfect matchings?
(with Hartke, West, Yancey)

4 What graphs are uniquely Kr -saturated?
(with Hartke)
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Overview Combinatorial Search

Main Technique: Combinatorial Search

Goal: Determine if certain combinatorial objects exist with given
structural or extremal properties.

Idea: Build objects piece-by-piece from base examples to
enumerate all desired examples of a given order.

Most interesting properties are invariant under isomorphism.
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Combinatorial Object: Graphs

A graph G of order n is composed of a set V (G) of n vertices and a
set E(G) of edges, where the edges are unordered pairs of vertices.
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Overview Combinatorial Search

Combinatorial Object: Graphs

An isomorphism between G1 and G2 is a bijection from V (G1) to
V (G2) that induces a bijection from E(G1) to E(G2).
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Overview Combinatorial Search

Example: Generating Graphs by Edges

We can build graphs starting at Kn by adding edges.
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Overview Combinatorial Search

Two Techniques for Isomorphs

1 Canonical Deletion (McKay 1998)

Removes all isomorphs.
Not known how to integrate with constraint propagation.
High cost per object.

Chapter 6

2 Orbital Branching (Ostrowski, Linderoth, Rossi, Smriglio 2007)
Removes some, but not all isomorphs.
Naturally integrates with constraint propagation.
Low cost per object.

Chapter 10
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Overview Combinatorial Search

Implementation

My TreeSearch library enables parallelization in the Condor scheduler.

Executes on the Open Science Grid, a collection of supercomputers
around the country.
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p-Extremal Graphs

Problems Tackled in This Thesis

1 Which numbers are representable as the number of chains in a
width-two poset?
(with Kupin, Reiniger) Chapter 4

2 Which colorings of {1, . . . , n} avoid monochromatic progressions?
(with Jobson, Kézdy) Chapter 5

3 How many edges can exist in a graph with p perfect matchings?
(with Hartke, West, Yancey) Chapter 9

4 What graphs are uniquely Kr -saturated?
(with Hartke) Chapter 11
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p-Extremal Graphs Perfect Matchings

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly
once.
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A perfect matching is a set of edges which cover each vertex exactly
once.
Φ(G) is the number of perfect matchings in the graph G.

Φ(G) = 3
8 edges
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p-Extremal Graphs Perfect Matchings

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly
once.

Question (Dudek, Schmitt, 2010) What is the maximum number of
edges in a graph with exactly n vertices and p perfect matchings?

Definition Let n be an even number and fix p ≥ 1.

f (n, p) = max{|E(G)| : |V (G)| = n, Φ(G) = p}.

Graphs attaining this number of edges are p-extremal.
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p-Extremal Graphs Perfect Matchings

Hetyei’s Theorem

Theorem (Hetyei’s Theorem, 1986) For all even n ≥ 2,

f (n, 1) =
n2

4
.
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p-Extremal Graphs Perfect Matchings

The Form of f (n, p)

Theorem (Dudek, Schmitt, 2010) For each p, there exist constants

np, cp so that for all n ≥ np,

f (n, p) =
n2

4
+ cp.

p 1 2 3 4 5 6
cp 0 1 2 2 2 3

H Dudek, Schmitt, 2010
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p-Extremal Graphs Perfect Matchings

Structure Theorem

Theorem (Hartke, Stolee, West, Yancey, 2011) For a fixed p, every
graph G with n vertices, p perfect matchings, and f (n, p) = n2

4 + cp
edges is composed of a finite list of fundamental graphs combined in
specified ways.

Proof involves several classic structure theorems from matching theory
in an extremal setting.

For p ≤ 10, the graphs have order at most 12.

Using standard software (McKay’s geng) we found the graphs and
computed cp.
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p-Extremal Graphs Perfect Matchings

Fundamental Graphs for 2 ≤ p ≤ 10

p = 2 p = 3 p = 4 p = 5 p = 5

p = 6 p = 6 p = 7 p = 8 p = 8

p = 8 p = 9 p = 10
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p-Extremal Graphs Perfect Matchings

cp for small p

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4

H Dudek, Schmitt 2010 HSWY 2011

Q: Is cp monotone in p?
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p-Extremal Graphs Perfect Matchings

Structural Theorem, Redux

Without more involved computational methods, brute force methods
(such as geng) cannot go farther.
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p-Extremal Graphs Perfect Matchings

Computational Method

Developed a computational method from:

1. Augmentations: Lovász Two Ear Theorem.

2. Isomorphs: Canonical Deletion. McKay

3. Pruning: Developed new structural and extremal theorems.

Before: Stuck at p ≤ 10 when searching on most 12 vertices.

Now: Found graphs for all p ≤ 27 on up to 22 vertices.
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p-Extremal Graphs Perfect Matchings

Fundamental Graphs for 11 ≤ p ≤ 27

p = 11 p = 11 p = 12 p = 13 p = 13 p = 13 p = 13 p = 13

p = 13 p = 14 p = 14 p = 15 p = 16 p = 16 p = 16 p = 16

p = 17 p = 17 p = 18 p = 18 p = 19 p = 19 p = 19 p = 19

p = 19 p = 19 p = 20 p = 21 p = 21 p = 21 p = 22 p = 23

p = 24 p = 24 p = 25 p = 25 p = 26 p = 26 p = 26 p = 27
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p-Extremal Graphs Perfect Matchings

cp for small p
p 1 2 3 4 5 6 7 8 9 10

cp 0 1 2 2 2 3 3 3 4 4
H Dudek, Schmitt, 2010 HSWY, 2011

p 11 12 13 14 15 16 17 18 19 20
cp 3 5 3 4 6 4 4 5 4 5

Stolee, 2011

p 21 22 23 24 25 26 27
cp 5 5 5 6 5 5 6

Stolee, 2011
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p-Extremal Graphs Perfect Matchings

cp for small p
p 1 2 3 4 5 6 7 8 9 10

cp 0 1 2 2 2 3 3 3 4 4
H Dudek, Schmitt, 2010 HSWY, 2011

p 11 12 13 14 15 16 17 18 19 20
cp 3 5 3 4 6 4 4 5 4 5

Stolee, 2011

p 21 22 23 24 25 26 27
cp 5 5 5 6 5 5 6

Stolee, 2011

cp not monotonic in p !
Blue numbers match conjectured upper bound.
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Uniquely Kr -Saturated Graphs

Problems Tackled in This Thesis

1 Which numbers are representable as the number of chains in a
width-two poset?
(with Kupin, Reiniger) Chapter 4

2 Which colorings of {1, . . . , n} avoid monochromatic progressions?
(with Jobson, Kézdy) Chapter 5

3 How many edges can exist in a graph with p perfect matchings?
(with Hartke, West, Yancey) Chapter 9

4 What graphs are uniquely Kr -saturated?
(with Hartke) Chapter 11
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

H-Saturated Graphs

Definition A graph G is H-saturated if

◦ G does not contain H as a subgraph. (H-free)
◦ For every e ∈ E(G), G + e contains H as a subgraph.

5-cycle 6-cycle

Example: H = K3 where Kr is the complete graph on r vertices.
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

H-Saturated Graphs

Definition A graph G is H-saturated if

◦ G does not contain H as a subgraph. (H-free)
◦ For every e ∈ E(G), G + e contains H as a subgraph.

5-cycle 6-cycle
is K3-saturated is not K3-saturated

Example: H = K3 where Kr is the complete graph on r vertices.
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

Turán’s Theorem

Theorem (Turán, 1941) Let r ≥ 3. If G is Kr -saturated on n vertices,
then G has at most

(
1− 1

r−1

) n2

2 edges (asymptotically).
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let r ≥ 3. If G is Kr -saturated
on n vertices, then G has at least (r−2

2 ) + (r − 2)(n− r + 2) edges.
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Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let r ≥ 3. If G is Kr -saturated
on n vertices, then G has at least (r−2

2 ) + (r − 2)(n− r + 2) edges.

1-book 2-book 3-book
Exactly one copy of Kr !
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Uniquely H-Saturated Graphs Definition

Uniquely H-Saturated Graphs

The Turán graph has many copies of Kr when an edge is added.

The books have exactly one copy of Kr when an edge is added.

Definition A graph G is uniquely H-saturated if G does not contain
H as a subgraph and for every edge e ∈ G admits exactly one copy of
H in G + e.

We consider the case where H = Kr (an r -clique).
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Uniquely H-Saturated Graphs Uniquely K3-Saturated Graphs

Uniquely K3-Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)
The uniquely K3-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a finite number of
Moore graphs of diameter 2 and girth 5.

?
C5 Petersen Hoffman– 57-Regular

Singleton Order 3250
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Uniquely H-Saturated Graphs Uniquely K3-Saturated Graphs

Dominating Vertices

Adding a dominating vertex to a uniquely Kr -saturated graph creates a
uniquely Kr+1-saturated graph.

Call uniquely Kr -saturated graphs without a dominating vertex

r -primitive.
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Uniquely H-Saturated Graphs Known r -Primitive Graphs

r -Primitive Graphs

A uniquely Kr -saturated graph with no dominating vertex is r -primitive.

2-primitive graphs are empty graphs.

3-primitive graphs are Moore graphs of diameter 2 and girth 5.
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Uniquely H-Saturated Graphs Known r -Primitive Graphs

r -Primitive Graphs

A uniquely Kr -saturated graph with no dominating vertex is r -primitive.

For r ≥ 1, C2r−1 is r -primitive.

C5 C7 C9

(Collins, Cooper, Kay, Wenger, 2010)
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Uniquely H-Saturated Graphs Known r -Primitive Graphs

Uniquely K4-Saturated Graphs

10 vertices 12 vertices

Previously known 4-primitive graphs (Collins, Cooper, Kay, 2010)
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Uniquely H-Saturated Graphs Main Questions

Two Questions

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?

2. Is every r -primitive graph regular?

Derrick Stolee (UNL) Computational Combinatorics 36 / 68



Uniquely H-Saturated Graphs Main Questions

Two Questions

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?

2. Is every r -primitive graph regular?

Derrick Stolee (UNL) Computational Combinatorics 36 / 68



Uniquely H-Saturated Graphs Main Questions

Two Questions

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?

2. Is every r -primitive graph regular?

Derrick Stolee (UNL) Computational Combinatorics 36 / 68



Uniquely H-Saturated Graphs Computational Method

Edges and Non-Edges

Non-edges are crucial to the structure of r -primitive graphs.
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Uniquely H-Saturated Graphs Computational Method

Edges and Non-Edges

Non-edges are crucial to the structure of r -primitive graphs.

Edge Non-edge

Unassigned

Trigraph
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Uniquely H-Saturated Graphs Computational Method

Kr -Completions

For every non-edge we add, we add a Kr -completion:

ij a non-edge if and only if there exists a set S ⊂ [n], |S| = r − 2,
so that ia, ja, and ab are edges for all a, b ∈ S.

S S S

r = 4 r = 5 r = 6

Derrick Stolee (UNL) Computational Combinatorics 38 / 68



Uniquely H-Saturated Graphs Computational Method

Computational Method

Developed a computational method from:

1. Augmentations: Kr -Completions.

2. Isomorphs: Orbital Branching. Ostrowsky et al.

3. Pruning: Contains Kr or double-completion.

Derrick Stolee (UNL) Computational Combinatorics 39 / 68



Uniquely H-Saturated Graphs Computational Method

Exhaustive Search Times

n r = 4 r = 5 r = 6 r = 7 r = 8
10 0.10 s 0.37 s 0.13 s 0.01 s 0.01 s
11 0.68 s 5.25 s 1.91 s 0.28 s 0.09 s
12 4.58 s 1.60 m 25.39 s 1.97 s 1.12 s
13 34.66 s 34.54 m 6.53 m 59.94 s 20.03 s
14 4.93 m 10.39 h 5.13 h 20.66 m 2.71 m
15 40.59 m 23.49 d 10.08 d 12.28 h 1.22 h
16 6.34 h 1.58 y 1.74 y 34.53 d 1.88 d
17 3.44 d 8.76 y 115.69 d
18 53.01 d
19 2.01 y
20 45.11 y

Total CPU times using Open Science Grid.

Derrick Stolee (UNL) Computational Combinatorics 40 / 68
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Uniquely H-Saturated Graphs 4-Primitive Graphs

4-Primitive Graphs
n = 13

G(A)
13 Paley(13)
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Uniquely H-Saturated Graphs 5-Primitive Graph

5-Primitive Graph
n = 16 : G(A)

16
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Uniquely H-Saturated Graphs 5-Primitive Graph

5-Primitive Graph
n = 16 : G(A)

16

Not all r -primitive graphs are regular!
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Uniquely H-Saturated Graphs 5-Primitive Graph

7-Primitive Graph
n = 17 : G(A)

17

Derrick Stolee (UNL) Computational Combinatorics 44 / 68



Uniquely H-Saturated Graphs 5-Primitive Graph

7-Primitive Graph
n = 17 : G(A)

17
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Uniquely H-Saturated Graphs Cayley Complements

Let Γ be a group and S ⊆ Γ a set of generators.

The undirected Cayley graph C(Γ, S) has vertex set Γ and for all
a ∈ Γ and b ∈ S, there is an edge between a and ab.

The Cayley complement C(Γ, S) is the complement of C(Γ, S).

For r ≥ 1, C(Z2r−1, {1}) ∼= C2r−1 is r -primitive.

C5 C7 C9
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Uniquely H-Saturated Graphs Cayley Complements

Two or Three Generators

S r n
{1, 4} 7 17

{1, 6} 16 37

{1, 8} 29 65

{1, 10} 46 101

{1, 12} 67 145

g = 2

S r n
{1, 5, 6} 9 31

{1, 8, 9} 22 73

{1, 11, 12} 41 133

{1, 14, 15} 66 211

{1, 17, 18} 97 307

g = 3
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Uniquely H-Saturated Graphs Cayley Complements

Infinite Families

Conjecture (Hartke, Stolee, 2012) Let t ≥ 1,

n = 4t2 + 1, and r = 2t2 − t + 1.

The Cayley complement C(Zn, {1, 2t}) is r -primitive.

Conjecture (Hartke, Stolee, 2012) Let t ≥ 1,

n = 9t2 − 3t + 1 and r = 3t2 − 2t + 1.

The Cayley complement C(Zn, {1, 3t − 1, 3t}) is r -primitive.
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Infinite Families

Theorem (Hartke, Stolee, 2012) Let t ≥ 1,

n = 4t2 + 1, and r = 2t2 − t + 1.

The Cayley complement C(Zn, {1, 2t}) is r -primitive.

Proof uses counting method.
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Uniquely H-Saturated Graphs Cayley Complements

Infinite Families

Theorem (Hartke, Stolee, 2012) Let t ≥ 1,

n = 4t2 + 1, and r = 2t2 − t + 1.

The Cayley complement C(Zn, {1, 2t}) is r -primitive.

Proof uses counting method.

Theorem (Hartke, Stolee, 2012) Let t ≥ 1,

n = 9t2 − 3t + 1 and r = 3t2 − 2t + 1.

The Cayley complement C(Zn, {1, 3t − 1, 3t}) is r -primitive.

Proof uses discharging method.
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Space-Bounded Complexity

Complexity Results in This Thesis

1 ReachFewL = ReachUL.
(with Garvin, Tewari, Vinodchandran) Chapter 13

2 Reachability in surface-embedded acyclic digraphs.
(with Vinodchandran) Chapter 14

Derrick Stolee (UNL) Computational Combinatorics 52 / 68



Space-Bounded Complexity Space-Bounded Complexity

Space-Bounded Complexity

A language is in L if there is a deterministic Turing machine that
decides the language using at most O(log(n)) work cells.

A language is in NL if there is a non-deterministic Turing machine
that decides the language using at most O(log(n)) work cells.

L ⊆ NL

Derrick Stolee (UNL) Computational Combinatorics 53 / 68



Space-Bounded Complexity Space-Bounded Complexity

Space-Bounded Complexity

A language is in L if there is a deterministic Turing machine that
decides the language using at most O(log(n)) work cells.

A language is in NL if there is a non-deterministic Turing machine
that decides the language using at most O(log(n)) work cells.

L ⊆ NL

Derrick Stolee (UNL) Computational Combinatorics 53 / 68



Space-Bounded Complexity Space-Bounded Complexity

Configuration Graphs

If M is an O(log(n))-space non-deterministic Turing machine and
x ∈ {0, 1}∗, the configuration graph GM,x has

1 Vertices are configurations: assignments of state, work cell
contents, and tape head positions.

(Requires O(log n) bits to describe.)
2 An edge C → C ′ exists if there is a transition function of M whose

operation on C results in C ′.

M accepts x if and only if there is a path from Cinit to Caccept in GM,x.

GM,x has poly-size and can be written using log-space.
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Space-Bounded Complexity Space-Bounded Complexity

Meta-Theory of Space-Bounded Complexity

Every space-bounded complexity problem can be
reduced to some form of the reachability problem in
digraphs.

Reach = {〈G, s, t〉 : G is a directed graph with a path from s to t}

L ⊆ NL ⊆ P
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Space-Bounded Complexity Space-Bounded Complexity

Complexity Results in This Thesis

1 ReachFewL = ReachUL.
(with Garvin, Tewari, Vinodchandran) Chapter 13

2 Reachability in surface-embedded acyclic digraphs.
(with Vinodchandran) Chapter 14
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Space-Bounded Complexity Space-Bounded Complexity

Log-space Classes and Reachability

L
Deterministic

Complete:
Undirected Reach

(Reingold 08)
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Space-Bounded Complexity Space-Bounded Complexity

Log-space Classes and Reachability

L
Deterministic

Complete:
Undirected Reach

(Reingold 08)

UL
Unambiguous

Contains:
Dir. Planar Reach
(Bourke, Tewari,

Vinodchandran 09)

NL
Nondeterministic

Complete:
Directed Reach
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Space-Bounded Complexity Reachability in Surface-Embedded Graphs

Other Perspectives

SPACE[log2 n] TISP
[
poly(n), n

2
√

log n

]

SPACE[log2−ε n] NL TISP
[
poly(n), n1−ε

]
UL

OO

PlanarReach

L

OO
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Space-Bounded Complexity Reachability in Surface-Embedded Graphs

Planar and Acyclic Restrictions

1 Reach for acyclic digraphs is complete for NL.

2 Reach for planar digraphs is in UL, but we believe UL = NL.

3 What if we combine acyclic and planar?

We also bound number of

sources sinks
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Space-Bounded Complexity Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
(Jakoby, Liśkiewicz, Reischuk, Tantau, ’06/’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)
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Space-Bounded Complexity Reachability in Surface-Embedded Graphs

Surface-embedded graphs

We also extend to graphs embedded in surfaces of low genus.

Let G(m, g) denote the acyclic digraphs with m sources and
embedded in a genus g surface.
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Space-Bounded Complexity Reachability in Surface-Embedded Graphs

Reduction with Compression

Theorem (Stolee, Vinodchandran, ’12) Given a graph G ∈ G(m, g)
and s, t ∈ V (G), we can compute in log-space a graph G′ with
vertices s′, t ′ so that

1 There is a path from s to t in G if and only if there is a path from
s′ to t ′ in G′.

2 G′ has O(m + g) vertices.
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Space-Bounded Complexity Reachability in Surface-Embedded Graphs

Topological Equivalence
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Space-Bounded Complexity Reachability in Surface-Embedded Graphs

Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order n in G(m, g)
is in SPACE[log n + log2(m + g)].

Theorem (Log-Space) If m = g = 2
√

log n, reach for G(m, g) is in L.

Theorem (Time-Space) Reachability for graphs of order n in G(m, g)
is in TISP[poly(n), log n + m + g].
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