Computational Combinatorics Blog

http://computationalcombinatorics.wordpress.com/

An online resource for how to use and extend computational methods in combinatorics, including discussions on the following topics:

- Using software as black box.
- Isomorph-free generation.
- Canonical labelings, orbit calculations.
- Orbital branching.
- Flag Algebras. (on the way)
- Local search techniques (on the way)
- More...

Guest authors are requested!

Michael Ferrara Ellen Gethner Stephen G. Hartke Derrick Stolee* Paul S. Wenger

University of Illinois

stolee@illinois.edu
http://www.math.illinois.edu/~stolee/

October 20, 2012

Distinguishing Colorings

A *k*-coloring of V(G) **distinguishes** *G* if the only color-preserving automorphism of *G* is the identity function.

The minimum *k* such that *G* has a distinguishing *k*-coloring is the **distinguishing number**, D(G).

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012 4 / 25

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012 4 / 25

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012 4 / 25

$$D(C_n) = \begin{cases} 3 & \text{if } n \leq 5\\ 2 & \text{if } n \geq 6 \end{cases}.$$

Consider the following game on a graph G with parameters k and m.

Consider the following game on a graph G with parameters k and m.

1. The Rascal selects a set W of m vertices and k-colors V(G) - W.

Consider the following game on a graph G with parameters k and m.

- 1. The Rascal selects a set W of m vertices and k-colors V(G) W.
- 2. The Gentleman k-colors W.

Consider the following game on a graph G with parameters k and m.

- 1. The Rascal selects a set W of m vertices and k-colors V(G) W.
- 2. The Gentleman k-colors W.

The Gentleman wins if the resulting coloring is distinguishing.

Consider the following game on a graph G with parameters k and m.

- 1. The Rascal selects a set W of m vertices and k-colors V(G) W.
- 2. The Gentleman k-colors W.

The Gentleman wins if the resulting coloring is distinguishing.

We restrict the Rascal from selecting W as a **fixing set**. (the point-wise stabilizer of W in G is trivial.)

The distinguishing extension number $D_e(G; k)$ is the minimum *m* such that the Gentleman always wins.

The distinguishing extension number $D_e(G; k)$ is the minimum *m* such that the Gentleman always wins.

If k = D(G), use $D_e(G) = D_e(G; k)$.

(We will use k = 2.)

The distinguishing extension number $D_e(G; k)$ is the minimum *m* such that the Gentleman always wins.

If
$$k = D(G)$$
, use $D_e(G) = D_e(G; k)$.

(We will use k = 2.)

Conjecture. For
$$n \ge 6$$
, $D_e(C_n) = \begin{cases} 6 & 5 \text{ divides } n \\ 5 & 4 \text{ divides } n \\ 4 & \text{otherwise} \end{cases}$

Our Results

Theorem. If the Rascal uses only one color, then the Gentleman wins with the proper number of blanks.

Our Results

Theorem. If the Rascal uses only one color, then the Gentleman wins with the proper number of blanks.

Theorem. If $p \ge 13$ is prime, then $D_e(C_p) = 4$.

Our Results

Theorem. If the Rascal uses only one color, then the Gentleman wins with the proper number of blanks.

Theorem. If $p \ge 13$ is prime, then $D_e(C_p) = 4$.

Theorem. The Gentleman wins if there are five blanks in **general position**.

Our Results

Theorem. If the Rascal uses only one color, then the Gentleman wins with the proper number of blanks.

Theorem. If $p \ge 13$ is prime, then $D_e(C_p) = 4$.

Theorem. The Gentleman wins if there are five blanks in **general position**.

Theorem. For all
$$n \ge 6$$
, $D_e(C_n) \le 21$.

Extension Number on Prime Cycles

Theorem. If $p \ge 13$ is prime, then $D_e(C_p) = 4$.

 $Aut(C_p)$ is the dihedral group of order 2*p*.

- 1. All rotations are primitive.
- 2. Two reflections make a rotation.

Step 1: Monochromatic Colorings

There are three blanks where the pairwise distances are distinct.

Color them with the other color.

Stolee and Friends (U. Illinois)

Step 1: Monochromatic Colorings

There are three blanks where the pairwise distances are distinct.

Color them with the other color.

(We now assume the coloring is not monochromatic.)

Step 2: Position of W

Let W be a set of blanks.

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Step 2: Position of W

Let W be a set of blanks.

There exists $w_0 \in W$ such that the reflection about w_0 sends $W - w_0$ to elements not in W.

Let
$$W = \{w_0, w_1, w_2, w_3\}.$$

Step 3: Restrictions on Colorings

Since *p* is prime, any rotation is **primitive**, and hence has one orbit of vertices.

Step 3: Restrictions on Colorings

Since *p* is prime, any rotation is **primitive**, and hence has one orbit of vertices.

All extensions must allow only one reflection

Step 3: Restrictions on Colorings

Since *p* is prime, any rotation is **primitive**, and hence has one orbit of vertices.

All extensions must allow only one reflection

There is at most one coloring c_{forb} which allows reflection about w_0 .

Step 4: Building a Rotation

Let $c_1 : \{w_1, w_2, w_3\} \rightarrow \{\text{Red}, \text{Blue}\}$ be a coloring on W which differs from c_{forb} in at least two positions.

Step 4: Building a Rotation

Let $c_1 : \{w_1, w_2, w_3\} \rightarrow \{\text{Red}, \text{Blue}\}$ be a coloring on W which differs from c_{forb} in at least two positions.

Let $\tau_{\rm R}^{(1)}$ be the reflection given when assigning $c_1(w_0)$ to be **Red**.

Let $\tau_{\rm B}^{(1)}$ be the reflection given when assigning $c_1(w_0)$ to be **Blue**.

Step 4: Building a Rotation

Let $c_1 : \{w_1, w_2, w_3\} \rightarrow \{\text{Red}, \text{Blue}\}$ be a coloring on W which differs from c_{forb} in at least two positions.

Let $\tau_{\rm R}^{(1)}$ be the reflection given when assigning $c_1(w_0)$ to be **Red**.

Let $\tau_{\rm B}^{(1)}$ be the reflection given when assigning $c_1(w_0)$ to be **Blue**.

 $\sigma_{(1)} = \tau_{B}^{(1)} \cdot \tau_{R}^{(1)}$ is the rotation given by performing $\tau_{R}^{(1)}$ then $\tau_{B}^{(1)}$.

Step 4: Building a Rotation

*w*₀

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012 1

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012 1

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012 1

Step 4: Building a Rotation

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012 1

There are three other blanks w_1 , w_2 , w_3 !

Some blank (say w_1) is not one of $\tau_{\mathsf{R}}^{(1)}(w_0), \tau_{\mathsf{B}}^{(1)}(w_0)$.

Change the color of w_1 from **Blue** to **Red**.

This creates a new coloring, c_2 .

Since c_2 differs from c_1 by one element, $c_2 \neq c_{\text{forb}}$.

Therefore, the red/blue extensions of c_2 to w_0 form:

- 1. Red/blue reflections $\tau_{\rm R}^{(2)}$ and $\tau_{\rm B}^{(2)}.$
- **2.** Rotation $\sigma_{(2)}$.

Extending in Prime Cycles Wrapping Up

Since $p \ge 13$, $\sigma_{(1)}$ and $\sigma_{(2)}$ cannot coexist! (Several details are omitted...)

Therefore, one of these extensions of c_1 or c_2 must have been distinguishing!

AND NOW FOR SOMETHING (not so) COMPLETELY DIFFERENT.

Let \mathbb{S}^d denote the unit sphere in \mathbb{R}^{d+1} . (\mathbb{S}^1 is the circle, \mathbb{S}^2 is the usual sphere.)

Let \mathbb{S}^d denote the unit sphere in \mathbb{R}^{d+1} . (\mathbb{S}^1 is the circle, \mathbb{S}^2 is the usual sphere.)

 $Aut(\mathbb{S}^d)$ consists of **linear maps** with determinant ± 1 . (Rigid motions with reflections/inversions.)

Let \mathbb{S}^d denote the unit sphere in \mathbb{R}^{d+1} . (\mathbb{S}^1 is the circle, \mathbb{S}^2 is the usual sphere.)

Aut(\mathbb{S}^d) consists of **linear maps** with determinant ± 1 . (Rigid motions with reflections/inversions.)

Aut(\mathbb{R}^k) consists of **affine linear maps** with determinant ± 1 . (Rigid motions with reflections/inversions and translations.)

Let \mathbb{S}^d denote the unit sphere in \mathbb{R}^{d+1} . (\mathbb{S}^1 is the circle, \mathbb{S}^2 is the usual sphere.)

Aut(\mathbb{S}^d) consists of **linear maps** with determinant ± 1 . (Rigid motions with reflections/inversions.)

Aut(\mathbb{R}^k) consists of **affine linear maps** with determinant ± 1 . (Rigid motions with reflections/inversions and translations.)

We can play the Rascal/Gentleman game on points in \mathbb{S}^d or \mathbb{R}^k .

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Conjecture. (The Circle) $D_e(S^1) = 6.$

20 / 25

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Conjecture. (The Circle) $D_e(\mathbb{S}^1) = 6.$

Conjecture. (The Plane) $D_e(\mathbb{R}^2) = 7.$

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Conjecture. (The Circle) $D_e(\mathbb{S}^1) = 6.$

Conjecture. (The Plane) $D_e(\mathbb{R}^2) = 7.$

Conjecture. (The Sphere) $D_e(\mathbb{S}^2) = 9.$

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Conjecture. (The Circle) $D_e(\mathbb{S}^1) = 6.$

Conjecture. (The Plane) $D_e(\mathbb{R}^2) = 7.$

Conjecture. (The Sphere) $D_e(\mathbb{S}^2) = 9.$

Conjecture. (Space!)

 $D_e(\mathbb{R}^3) = 10.$

Conjecture. $D_e(\mathbb{S}^2) = 9$.

Conjecture. $D_e(\mathbb{S}^2) = 9$.

Conjecture. $D_e(\mathbb{S}^2) = 9$.

Sphere image from http://en.wikipedia.org/wiki/Sphere

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Conjecture. $D_e(\mathbb{R}^{d+1}) = D_e(\mathbb{S}^d) + 1.$ $(D_e(\mathbb{R}^{d+1}) > D_e(\mathbb{S}^d)$ by adding a blank at 0.)

23/25

Conjecture. $D_e(\mathbb{R}^{d+1}) = D_e(\mathbb{S}^d) + 1.$ $(D_e(\mathbb{R}^{d+1}) > D_e(\mathbb{S}^d)$ by adding a blank at 0.)

Conjecture. $D_e(\mathbb{R}^3) = 10$.

Stolee and Friends (U. Illinois)

Distinguishing Extension Number

Oct. 20, 2012

- Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.
- Conjecture. (The Circle) $D_e(\mathbb{S}^1) = 6.$

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Conjecture. (The Circle) $D_e(S^1) = 6.$

Theorem. If the Rascal uses only one color on the circle, the Gentleman wins with 6 blanks.

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Conjecture. (The Circle) $D_e(\mathbb{S}^1) = 6.$

Theorem. If the Rascal uses only one color on the circle, the Gentleman wins with 6 blanks.

Theorem. The Gentleman wins on the circle if five blanks are in **general position**.

Theorem. (The Real Line) $D_e(\mathbb{R}^1) = 4$.

Conjecture. (The Circle) $D_e(\mathbb{S}^1) = 6.$

Theorem. If the Rascal uses only one color on the circle, the Gentleman wins with 6 blanks.

Theorem. The Gentleman wins on the circle if five blanks are in **general position**.

Corollary. (The Circle)

$$D_e(\mathbb{S}^1) \leq 21.$$

Distinguishing Extension Number

Michael Ferrara Ellen Gethner Stephen G. Hartke Derrick Stolee* Paul S. Wenger

University of Illinois

stolee@illinois.edu
http://www.math.illinois.edu/~stolee/

October 20, 2012