Computational Combinatorics and the search for Uniquely *K*_r-Saturated Graphs

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

September 12, 2013

Joint work with Stephen G. Hartke, appeared in Electronic Journal of Combinatorics, 2012.

What is Computational Combinatorics?

What is Computational Combinatorics?

Using a combination of

- pure mathematics,
- algorithms, and
- computational resources

to solve problems in pure combinatorics by

- providing evidence for conjectures,
- finding examples and counterexamples, and
- discovering and proving theorems.

The Goal

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

The Goal

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

Examples:

Is there a projective plane of order 10?

When do strongly regular graphs exist?

How many Steiner triple systems are there of order 19?

The Goal

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

Examples:

Is there a projective plane of order 10? (Lam, Thiel, Swiercz, 1989)

When do strongly regular graphs exist? (Spence 2000, Coolsaet, Degraer, Spence 2006, many others)

How many Steiner triple systems are there of order 19? (Kaski, Östergård, 2004)

Combinatorial Object: Graphs

A graph *G* of order *n* is composed of a set V(G) of *n* vertices and a set E(G) of edges, where the edges are unordered pairs of vertices.

Combinatorial Object: Graphs

Cycles C_k

Combinatorial Object: Graphs

Cycles C_k

Complete Graphs K_r

(cliques)

Main Technique: Combinatorial Search

- **Goal:** Determine if certain combinatorial objects exist with given structural or extremal properties.
- Idea: Build objects *piece-by-piece* from *base examples* to enumerate all desired examples of a given order.

Main Technique: Combinatorial Search

- **Goal:** Determine if certain combinatorial objects exist with given structural or extremal properties.
- Idea: Build objects *piece-by-piece* from *base examples* to enumerate all desired examples of a given order.

The computer performs a long, detailed case analysis.

Main Technique: Combinatorial Search

- **Goal:** Determine if certain combinatorial objects exist with given structural or extremal properties.
- Idea: Build objects *piece-by-piece* from *base examples* to enumerate all desired examples of a given order.

The computer performs a long, detailed case analysis.

Our job is to efficiently design the case analysis, using algorithms:

- Combinatorial Generation
- Combinatorial Optimization
- Graph Algorithms

An **isomorphism** between G_1 and G_2 is a bijection from $V(G_1)$ to $V(G_2)$ that induces a bijection from $E(G_1)$ to $E(G_2)$.

Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An **unlabeled** graph represents an isomorphism class of graphs.

Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An **unlabeled** graph represents an isomorphism class of graphs.

Most interesting graph properties are **invariant under isomorphism**.

n	Labeled graphs of order n
6	32,768
7	2,097,152
8	268,435,456
9	68,719,476,736
10	35,184,372,088,832
11	36,028,797,018,963,968
12	2 73,786,976,294,838,206,464
13	302,231,454,903,657,293,676,544
14	2,475,880,078,570,760,549,798,248,448
15	40,564,819,207,303,340,847,894,502,572,032

 $\mathbf{2}^{\binom{n}{2}} \approx \mathbf{2}^{\theta(n^2)}$

	п	Unlabeled connected	graphs of order n
	6		85
	7		509
	8		4,060
	9		41,301
	10		510,489
	11		7,319,447
	12		117,940,535
	13		2,094,480,864
	14		40,497,138,011
	15	8	345,480,228,069
С	DEIS	Sequence A002851	Grows $2^{\Omega(n^2)}$.

n	Unlabeled connected graphs of order n	
6	85	
7	509	
8	4,060	
9	41,301	
10	510,489	
11	7,319,447	
12	117,940,535	
13	2,094,480,864	
14	40,497,138,011	
15	845,480,228,069	
Requires about 1 day of CPU Time.		

n	Unlabeled connected graphs of order n	
6	85	
7	509	
8	4,060	
9	41,301	
10	510,489	
11	7,319,447	
12	117,940,535	
13	2,094,480,864	
14	40,497,138,011	
15	845,480,228,069	
Requires over 1 year of CPU Time.		

Unlabeled Graphs

Example: Generating Graphs by Edges

Toy Example

Suppose we are searching for graphs which are:

- **4-regular**: All vertices have 4 incident edges.
- 3-colorable: The vertices can be colored with three colors so that no edge is monochromatic.

Implementation

My TreeSearch library enables parallelization in the Condor scheduler.

Executes on the **Open Science Grid**, a collection of supercomputers around the country.

Open Science Grid

Computational Combinatorics

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

Example: $H = K_3$ where K_r is the **complete graph** on *r* vertices.

Derrick Stolee (ISU)

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

Example: $H = K_3$ where K_r is the **complete graph** on *r* vertices.

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

Example: $H = K_3$ where K_r is the **complete graph** on *r* vertices.

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

Example: $H = K_3$ where K_r is the **complete graph** on *r* vertices.

Turán's Theorem

Theorem (Turán, 1941) Let $r \ge 3$. If *G* is *K*_r-saturated on *n* vertices, then *G* has **at most** $\left(1 - \frac{1}{r-1}\right) \frac{n^2}{2}$ edges (asymptotically).

Turán's Theorem

Theorem (Turán, 1941) Let $r \ge 3$. If *G* is K_r -saturated on *n* vertices, then *G* has at most $(1 - \frac{1}{r-1}) \frac{n^2}{2}$ edges (asymptotically).

Turán's Theorem

Theorem (Turán, 1941) Let $r \ge 3$. If *G* is K_r -saturated on *n* vertices, then *G* has at most $(1 - \frac{1}{r-1})\frac{n^2}{2}$ edges (asymptotically).

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let $r \ge 3$. If *G* is K_r -saturated on *n* vertices, then *G* has at least $\binom{r-2}{2} + (r-2)(n-r+2)$ edges.

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let $r \ge 3$. If *G* is K_r -saturated on *n* vertices, then *G* has at least $\binom{r-2}{2} + (r-2)(n-r+2)$ edges.

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let $r \ge 3$. If *G* is K_r -saturated on *n* vertices, then *G* has at least $\binom{r-2}{2} + (r-2)(n-r+2)$ edges.

Uniquely *H*-Saturated Graphs

The Turán graph has many copies of K_r when an edge is added.

The books have **exactly one** copy of K_r when an edge is added.

Uniquely *H*-Saturated Graphs

The Turán graph has **many** copies of K_r when an edge is added.

The books have exactly one copy of K_r when an edge is added.

Definition A graph *G* is **uniquely** *H***-saturated** if *G* does not contain *H* as a subgraph and for every edge $e \in \overline{G}$ admits **exactly one** copy of *H* in G + e.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)

The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a **finite number** of Moore graphs of diameter 2 and girth 5.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a **finite number** of Moore graphs of diameter 2 and girth 5.

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)

There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Wenger, 2010)

The only uniquely C₅-saturated graphs are friendship graphs.

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Wenger, 2010)

The only uniquely C₅-saturated graphs are friendship graphs.

Theorem (Wenger, 2010)

For $k \in \{6, 7, 8\}$, no uniquely C_k -saturated graph exists.

Conjecture (Wenger, 2010)

For $k \ge 9$, no uniquely C_k -saturated graph exists.
Uniquely K_r -Saturated Graphs

We consider the case where $H = K_r$ (an *r*-clique) for $r \ge 4$.

Uniquely K_r -Saturated Graphs

We consider the case where $H = K_r$ (an *r*-clique) for $r \ge 4$.

 $(K_3 \cong C_3)$

Definition

Uniquely K_r-Saturated Graphs

We consider the case where $H = K_r$ (an *r*-clique) for r > 4. $(K_3 \cong C_3)$

Definition A graph G is **uniquely** K_r-saturated if G does not contain an *r*-clique and for every edge $e \in G$ there is exactly one *r*-clique in G + e.

Adding a dominating vertex to a uniquely K_r -saturated graph creates a uniquely K_{r+1} -saturated graph.

- •
- •

Adding a dominating vertex to a uniquely K_r -saturated graph creates a uniquely K_{r+1} -saturated graph.

Adding a dominating vertex to a uniquely K_r -saturated graph creates a uniquely K_{r+1} -saturated graph.

Adding a dominating vertex to a uniquely K_r -saturated graph creates a uniquely K_{r+1} -saturated graph.

Adding a dominating vertex to a uniquely K_r -saturated graph creates a uniquely K_{r+1} -saturated graph.

Call uniquely K_r -saturated graphs without a dominating vertex

r-primitive.

A uniquely K_r -saturated graph with no dominating vertex is *r*-primitive.

A uniquely K_r -saturated graph with no dominating vertex is *r*-primitive.

2-primitive graphs are empty graphs.

A uniquely K_r -saturated graph with no dominating vertex is *r*-primitive.

2-primitive graphs are empty graphs.

3-primitive graphs are Moore graphs of diameter 2 and girth 5.

A uniquely K_r -saturated graph with no dominating vertex is *r*-primitive.

A uniquely K_r -saturated graph with no dominating vertex is *r*-primitive.

A uniquely K_r -saturated graph with no dominating vertex is *r*-primitive.

A uniquely K_r -saturated graph with no dominating vertex is *r*-primitive.

Uniquely *K*₄-Saturated Graphs

Previously known 4-primitive graphs (Collins, Cooper, Kay, 2010)

Computational Combinatorics

The Problem

Goal: Characterize uniquely K_r -saturated graphs. *First Step:* Reduce to *r*-primitive graphs.

The Problem

Goal: Characterize uniquely *K*_{*r*}-saturated graphs. *First Step:* Reduce to *r*-primitive graphs.

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

The Problem

Goal: Characterize uniquely *K*_{*r*}-saturated graphs. *First Step:* Reduce to *r*-primitive graphs.

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

2. Is every *r*-primitive graph regular?

Edges and Non-Edges

Non-edges are crucial to the structure of *r*-primitive graphs.

Edges and Non-Edges

Non-edges are crucial to the structure of *r*-primitive graphs.

Edges, Non-Edges, and Variables

Fix a vertex set $\{v_1, v_2, \ldots, v_n\}$.

For $i, j \in \{1, ..., n\}$, let

$$x_{i,j} = egin{cases} 1 & v_i v_j \in E(G) \ 0 & v_i v_j \notin E(G) \ st & v_i v_j$$
 unassigned

.

A vector $\mathbf{x} = (x_{i,j} : i, j \in \{1, \dots, n\})$ is a variable assignment.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

are independent of vertex labels.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

are independent of vertex labels.

Automorphisms of the tricolored graph define **orbits** on variables $x_{i,j}$.

Orbital branching reduces the number of isomorphic duplicates. (Ostrowski, Linderoth, Rossi, Smriglio, 2007)

Generalizes **branch-and-bound** strategy from Integer Programming.

Branch-and-Bound

x is given Variable $x_{i,j}$ is selected

Branch-and-Bound

Branch-and-Bound

Orbital Branching

x is given Orbit \mathcal{O} is selected

Computational Combinatorics

K_r-Completions

For every non-edge we add, we add a K_r -completion:

 $x_{i,j} = 0$ if and only if there exists a set $S \subset [n]$, |S| = r - 2, so that $x_{i,a} = x_{j,a} = x_{a,b} = 1$ for all $a, b \in S$.

x is given Orbit *O* is selected

aturated Graphs Orbital Branching

Computational Combinatorics

Exhaustive Search Times

-

n	<i>r</i> = 4	<i>r</i> = 5	<i>r</i> = 6	<i>r</i> = 7	<i>r</i> = 8
10	0.10 s	0.37 s	0.13 s	0.01 s	0.01 s
11	0.68 s	5.25 s	1.91 s	0.28 s	0.09 s
12	4.58 s	1.60 m	25.39 s	1.97 s	1.12 s
13	34.66 s	34.54 m	6.53 m	59.94 s	20.03 s
14	4.93 m	10.39 h	5.13 h	20.66 m	2.71 m
15	40.59 m	23.49 d	10.08 d	12.28 h	1.22 h
16	6.34 h	1.58 y	1.74 y	34.53 d	1.88 d
17	3.44 d			8.76 y	115.69 d
18	53.01 d				
19	2.01 y				
20	45.11 y				

Total CPU times using Open Science Grid.

($\approx 8.83 \times 10^{18}$ connected graphs of order 20)

Computational Combinatorics

Empty graphs

Empty graphs

Cycle complements

New examples

New examples

4-Primitive Graphs n = 13

Paley(13)

5-Primitive Graph $n = 16: G_{16}^{(A)}$

Not all *r*-primitive graphs are regular!

7-Primitive Graph $n = 17 : G_{17}^{(A)}$

7-Primitive Graph n = 17: $G_{17}^{(A)}$

The Cayley complement $\overline{C}(\mathbb{Z}_n, S)$ has vertex set $\{0, 1, ..., n-1\}$ and an edge *ij* if and only if $|i - j| \pmod{n} \notin S$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, S)$ has vertex set $\{0, 1, ..., n-1\}$ and an edge *ij* if and only if $|i - j| \pmod{n} \notin S$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\} \subseteq \mathbb{Z}$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\} \subseteq \mathbb{Z}$.
- 2. Select an integer $n > 2a_g$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\} \subseteq \mathbb{Z}$.
- 2. Select an integer $n > 2a_g$.
- **3**. Compute $r = \omega(\overline{C}(\mathbb{Z}_n, S)) + 1$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\} \subseteq \mathbb{Z}$.
- 2. Select an integer $n > 2a_g$.
- **3**. Compute $r = \omega(\overline{C}(\mathbb{Z}_n, S)) + 1$.
- 4. Check if $\overline{C}(\mathbb{Z}_n, S) + \{0, a_i\}$ has a unique *r*-clique for all $a_i \in S$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\} \subseteq \mathbb{Z}$.
- 2. Select an integer $n > 2a_g$.
- **3**. Compute $r = \omega(\overline{C}(\mathbb{Z}_n, S)) + 1$.
- 4. Check if $\overline{C}(\mathbb{Z}_n, S) + \{0, a_i\}$ has a unique *r*-clique for all $a_i \in S$.

Used Niskanen and Östergård's *cliquer* software to compute $\omega(G)$.

Two or Three Generators

S	r	n	<i>S</i>	r	n	
{1,4}	7	17	$\{1, 5, 6\}$	9	31	
{1,6}	16	37	$\{1, 8, 9\}$	22	73	
$\{1, 8\}$	29	65	{1, 11, 12}	41	133	
{1,10}	46	101	{1, 14, 15}	66	211	
{1,12}	67	145	{1, 17, 18}	97	307	
g= 2			<i>g</i> =	g= 3		

Infinite Families

Conjecture (Hartke, Stolee, 2012) Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Conjecture (Hartke, Stolee, 2012) Let $t \ge 1$, $n = 9t^2 - 3t + 1$ and $r = 3t^2 - 2t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t-1, 3t\})$ is *r*-primitive.

Infinite Families

Theorem (Hartke, Stolee, 2012) Let $t \ge 1$,

 $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Proof uses **counting** method.

Conjecture (Hartke, Stolee, 2012) Let $t \ge 1$, $n = 9t^2 - 3t + 1$ and $r = 3t^2 - 2t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t-1, 3t\})$ is *r*-primitive.

Infinite Families

Theorem (Hartke, Stolee, 2012) Let $t \ge 1$,

 $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Proof uses **counting** method.

Theorem (Hartke, Stolee, 2012) Let $t \ge 1$, $n = 9t^2 - 3t + 1$ and $r = 3t^2 - 2t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is *r*-primitive.

Proof uses **discharging** method.

Computational Combinatorics

- Orbital Branching: Formalize custom augmentations for arbitrary constraint systems.
- 2. **Discharging:** Automate process so computer can discover and write proofs.
- 3. More Techniques: Find, Adapt, or Develop.

Computational Combinatorics and the search for Uniquely *K*_r-Saturated Graphs

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

September 12, 2013

Joint work with Stephen G. Hartke, appeared in Electronic Journal of Combinatorics, 2012.