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Distance Graphs

For a set S of positive integers, the distance graph G(S) is the infinite graph with
vertex set Z where

two integers i and j are adjacent if and only if |i − j | ∈ S.



Circulant Graphs

For an integer n, the circulant graph G(n,S) is the graph whose vertices are the
integers modulo n where

two integers i and j are adjacent if and only if |i − j | ≡ k (mod n), for some k ∈ S.
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Fractional Chromatic Number

A fractional coloring of a graph G is a feasible solution to the following linear
program:

min ∑I∈I cI

∑I3v cI ≥ 1 ∀v ∈ V (G)
cI ≥ 0 ∀I ∈ I

where I is the collection of independent sets in G.

The fractional chromatic number χf (G) is the minimum value of a fractional
coloring, and provides a lower bound on the chromatic number.
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Independence Ratio

For an independent set A in G(S) the density δ(A) is equal to

δ(A) = lim sup
N→∞

|A∩ [−N,N ]|
2N + 1

.

The independence ratio α(S) is the supremum of δ(A) over all independent sets
A in G(S).

Theorem (Lih, Liu, and Zhu, ’99) Let S be a finite set of positive integers.

χf (G(S)) =
1

α(S)
.
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Periodic Independent Sets to Fractional Colorings

Suppose X ⊂ Z is a periodic independent set in G(S) with period p and density

δ(X ) = d
p .

Let Xi = X + i for i ∈ {0, . . . ,p− 1}.

Assign cXi =
1
d . Every vertex appears in d sets Xi , so d · 1

d ≥ 1.

Then

χf (G(S)) ≤ ∑p−1
i=0 cXi =

p
d =

1
δ(X )

.
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Periodic Independent Sets

Theorem (CGHRS, ’14+) Let S be a finite set of positive integers and let
s = max S.

There exists a periodic independent set A in G(S) with period at most s2s where
δ(A) = α(S).



Cycle Lemma

Let G be a finite digraph with weights on the vertices.

An infinite walk in G is a sequence W = (wi)i∈Z such that wiwi+1 is an edge for
all i ∈ Z.

The (upper) average weight of W is w(W ) = lim supN→∞
∑N

i=−N wi
2N+1 .

Lemma (Cycle Lemma) Let G be a finite, vertex-weighted digraph. The
supremum of upper average weights of infinite walks on G is equal to the upper
average weight of some infinite walk given by repeating a simple cycle.
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Proof of Cycle Lemma

Let W = (xi)i∈Z be an infinite walk in G and let N � n(G).

Let WN = (xi)
N
i=−N

and observe that for large N,
∑N

i=−N w(xi)

2N + 1
closely approximates w(W ).
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N
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and observe that for large N, ∑N
i=−N w(xi )
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There exist cycles C1, . . . ,Ct such that
∑N

i=−N w(xi)

2N + 1
is closely approximated by a

convex combination of w(C1), . . . ,w(Ct ).

Thus, in the limit, w(W ) ≤ max{ w(C) : C is a cycle in G}.
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Proof of Periodic Sets

A state is allowed if σ is independent in G(S).



Proof of Periodic Sets



Proof of Periodic Sets

The state diagram of allowed states is a digraph where an ordered pair (σ1, σ2) of
states be an edge if and only if σ1 ∪ (s + σ2) is independent in G(S).



Proof of Periodic Sets

The independent sets X in G(S) are in bijection with the infinite walks W in the
state diagram, and the density of X equals the average weight of its
corresponding walk, WX .

By the cycle lemma, the maximum density of an infinite walk in the state diagram
is achieved by repeating a simple cycle C. The independent set XC given by those
states has maximum density δ(XC) = α(S).

The length of C is at most 2s, so the period of XC is at most s2s.
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Other Periodic Sets

Let S be a finite set of positive integers and set s = max S.

Theorem (CGHRS, ’14+) The minimum density of a dominating set in G(S) is
achieved by a periodic set with period at most (2s)22s.

Theorem (CGHRS, ’14+) The minimum density of a 1-identifying code in G(S)
is achieved by a periodic set with period at most (6s)26s.

Corollary (CGHRS, ’14+) The minimum density of an r -identifying code in G(S)
is achieved by a periodic set with period at most (6sr )26sr .

Theorem (Eggleton, Erdős, and Skilton, ’90) For k = χ(G(S)), there exists a
periodic proper k -coloring c with minimum period at most sks.



Example Theorem (S = {1,2, k})

Theorem (Zhu, ’02)

α({1,2, k}) =


k

3k+3 if k ≡ 0 (mod 3)

1
3 if k ≡ 1 (mod 3)

1
3 if k ≡ 2 (mod 3).



Example Theorem (S = {1,4, k})

Theorem (CGHRS, ’14+) For k > 4,

α({1,4, k}) =



2k
5k+5 if k ≡ 0 (mod 5)

2
5 if k ≡ 1 (mod 5)

2k+1
5k+5 if k ≡ 2 (mod 5)

2k−1
5k+5 if k ≡ 3 (mod 5)

2
5 if k ≡ 4 (mod 5).



Example Theorem (S = {1,4, k})
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Discharging

Suppose X = {xi : i ∈ Z} ⊆ Z is an infinite independent set in G(S).



Discharging

Elements are labeled . . . , x−1, x0, x1, . . . , xi , . . . .



Discharging

Blocks are sets Bk = {xk , xk + 1, . . . , xk+1 − 1}.
(“Intervals” closed on element xk and open on xk+1)



Discharging

Frames are collections Fj = {Bj ,Bj+1, . . . ,Bj+t−1}.
(There are t blocks in each frame.)



Local Discharging Lemma

Let a,b, c, t be nonnegative integers. Let X be a periodic independent set in G(S).

Stage 1: Blocks µ(Bj) = a|Bj | − b
discharge // µ∗(Bj)

defines
��

Stage 2: Frames ν∗(Fj)
discharge // ν′(Fj) ≥ c

If ν′(Fj) ≥ c for all frames, then

δ(X ) ≤ at
bt + c

.
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Example Discharging Argument (S = {1,4, k})
Theorem (CGHRS, ’14+) For k > 4,

α({1,4, k}) =



2k
5k+5 if k ≡ 0 (mod 5)
2
5 if k ≡ 1 (mod 5)
2k+1
5k+5 if k ≡ 2 (mod 5)
2k−1
5k+5 if k ≡ 3 (mod 5)
2
5 if k ≡ 4 (mod 5).

Always, let a = 2 and b = 5.

Residue class t c Extremal Set

k=5i t = 2i c = 2 (2 3)i−1 32

k=5i + 1 t = 1 c = 0 2 3

k=5i + 2 t = 2i + 1 c = 1 (2 3)i 3

k=5i + 3 t = 2i + 1 c = 3 (2 3)i−1 33

k=5i + 4 t = 1 c = 0 2 3

Block Size µ-charge µ∗-charge

2 −1 0

3 1 0, 1

5 5 4, 5

6 7 6, 7



Example Discharging Argument (S = {1,4, k})
For all cases, let a = 2 and b = 5.

Residue class t c Extremal Set

k=5i t = 2i c = 2 (2 3)i−1 32

k=5i + 1 t = 1 c = 0 2 3

k=5i + 2 t = 2i + 1 c = 1 (2 3)i 3

k=5i + 3 t = 2i + 1 c = 3 (2 3)i−1 33

k=5i + 4 t = 1 c = 0 2 3

Block Size µ-charge µ∗-charge

2 −1 0

3 1 0, 1

5 5 4, 5

6 7 6, 7

(S1) Every 2-block Bj pulls one unit of charge from Bj+1.

+1



Example Discharging Argument (S = {1,4, k})
Case k = 5i + 3:

Let t = 2i + 1 and c = 3. Thus at
bt+c = 4i+2

10i+8 = 2i+1
5i+4 = 2k−1

5k+5 .

We use the following
second-stage discharging rule.

(S2) If σ(Fj) = ∑B`∈Fj
|B`| = 5i + 2, then Fj pulls 1 unit of charge from each of

Fj+1, Fj+2, and Fj+3.

It remains to show that:

1. if ν∗(Fj) < 3 = c, then σ(Fj) = 5i + 2 and Fj pulls charge by (S2).

2. if Fj loses charge by (S2), then Fj contains a 5-block and ν∗(Fj) ≥ 4.
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Densities for S = {1,1 + k ,1 + k + i}
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Future Work

Goal: Characterize α({i , j , k}) for all 1 ≤ i < j < k . (or just i = 1?)

Discharging arguments for |S| > 3?

Stronger bounds on minimum period?
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