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Fault Tolerance

These devices break!

We want to know which device needs to be repaired after a failure.

We can put detection process on some of the nodes, but that drains power, so we
want to put that on the smallest number of nodes.

Combinatorial Optimization!
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Density

These grids are amenable:

lim sup
r→∞

|Br+d (v) \ Br (v)|
|Br (v)|

= 0,

where Br (v) is the ball of radius r about a vertex v .
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Therefore, we can select an arbitrary vertex v0 ∈ V (G) and define the density of
a set X ⊆ V (G) as
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This definition is used for problems where we minimize the density.

We would use lim inf for maximizing the density.
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Dominating Sets

A set X ⊆ V (G) is a dominating set if

◦ N [v ] ∩ X 6= ∅ for all vertices v ∈ V (G).

(N [v ] is the closed neighborhood of v : N [v ] = N(v) ∪ {v}.)

Forbidden Configuration

It is not difficult to see that the optimal density of a dominating set in the hexagonal
grid is 1

4 = 0.250000.
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If the final charge amount is bounded below by the same value, then we have a
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Why did it work?
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It is also a sharp lower bound: δ > 2
5 as it is impossible to construct a local area

where µ′(v) = 2
5 for all vertices.
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Discharging Arguments

There are a few subtle points:

We actually have a charge function ν(f ) on the faces: ν(f ) = 0.

When we discharge with the faces, we must have that ν′(f ) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of charge a bounded
distance.
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Discharging Arguments

The main difficulty with designing discharging arguments is to balance

I Low-charge objects receive enough charge to match the goal value.

I High-charge objects maintain enough charge to match the goal value.



We replace the manual “guess-and-check” method with a framework for producing
discharging arguments.

Automated Discharging Arguments using GEneration.

ADAGE

A proof using this technique is called an adage.
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Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Example constraints:

−x1 − x12 − x126 − x356 − x600 − x1563 ≥ 0
− x5 − 2x345 − 3x1260 ≥ 0



Generating Constraints

Vertex Face
1,758 Constraints 663,662 Constraints

1,758 Rules with 5,238 Variables.
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Solving the Linear Program

To assign value to the rules, we create the following linear program:

max w
∑f∈F (G) D(f , v) − w ≥ −1 ∀v ∈ X
∑f∈F (G) D(f , v) − w ≥ 0 ∀v ∈ V (G) \ X

−∑v∈V (G) D(f , v) ≥ 0 ∀f ∈ F (G)
D(f , v), w free
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Theorem

Let X be an identifying code in the hexagonal grid. The adage proof using rule N
demonstrates a lower bound of δ(X ) ≥ 23

55 = 0.418.

This improves the previous-best lower bound of Cuickerman & Yu ( 5
12 = 0.416) but

does not match the current-best upper bound (3
7 ≈ 0.42857).
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Other Rule Sets in Hexagonal Grid
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Other Rule Sets in Square Grid

Constraint
Rules Confgurations

V1

N

V2

C+
1

Constraint
Rules Confgurations

C+
1

C+
2

C+
3



Other Rule Sets in Triangular Grid
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Results for Variations on Identifying Codes

Set Type Hexagonal Grid Square Grid Triangular Grid

Dominating Set V1
1
4 ≈ 0.250000∗ V1

1
5 ≈ 0.200000∗ V1

1
7 ≈ 0.142857∗

Identifying Code N 23
55 ≈ 0.418182† V2

7
20 ≈ 0.350000∗ V1

1
4 ≈ 0.250000∗

Strong Identify-
ing Code

V2
8
17 ≈ 0.470588 C1 ∪C2

7
18 ≈ 0.388889 C+

1 ∪C+
2

4
13 ≈ 0.307692

Locating-
Dominating
Code

V2
1
3 ≈ 0.333333∗ V2

3
10 ≈ 0.300000∗ C1 ∪C2

12
53 ≈ 0.226415

Open-Locating-
Dominating
Code

V2
1
2 ≈ 0.500000∗ C+

1
2
5 ≈ 0.400000∗ C+

1
4

13 ≈ 0.307692∗
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1. More discharging rules, more adage proofs. Can we do better?

2. Build a white-box implementation of linear programming. Perhaps use a
primal-dual algorithm?

3. Extend framework to coloring problems on planar graphs.

4. Use discharging as combinatorial dual for finite combinatorial optimization
problems.
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