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Combinatorial Object: Graphs

A graph G of order nis composed of a set V(G) of n vertices and a
set E(G) of edges, where the edges are unordered pairs of vertices.
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Two Flavors of Graph Theory

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Extremal Graph Theory:

Given some structure, what size restrictions are guaranteed?
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Connectedness

A graph is connected if for every pair u, v of vertices in G there exists
a path fromuto vin G.

Think of the “6-Degrees of Kevin Bacon” game, played on the IMDB
graph.
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Extremal Graph Theory

Given specified structure, determine bounds on size.
“Size” usually means “number of edges”

Another perspective: Specific values of one parameter influence the
value of another.
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Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly
once.

Question (Dudek, Schmitt, 2010) What is the maximum number of
edges in a graph with exactly n vertices and p perfect matchings?

Definition Let nbe an even number and fix p > 1.

f(n.p) = max{|E(G)| : |V(G)| = n,®(G) = p}.

Graphs attaining this number of edges are p-extremal.
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Theorem (Dudek, Schmitt, 2010) For each p, there exist constants
Np, Cp SO that for all n > np,
2
n

p| 1 1234576
¢ 0 | 1|2 223
H | Dudek, Schmitt, 2010
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Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed p, every
graph G with n vertices, p perfect matchings, and f(n, p) = %2 +Cp
edges is composed of a finite list of fundamental graphs combined in
specified ways.

Proof involves several classic structural theorems from matching
theory in an extremal setting.

For p < 10, the graphs have order at most 12.

We should “simply” list all graphs of this size and pick the best ones!
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Generating Graphs

Example: Generating Graphs by Edges

An isomorphism between G; and G is a bijection from V(Gy) to
V(G.) that induces a bijection from E(G;) to E(Go).




Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An unlabeled graph represents an isomorphism class of graphs.
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Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An unlabeled graph represents an isomorphism class of graphs.

Most interesting graph properties are invariant under isomorphism.



Number of unlabeled connected graphs of order n
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Number of unlabeled connected graphs of order n
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Structure Theorem

Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed p, every
graph G with n vertices, p perfect matchings, and f(n, p) = %2 +Cp
edges is composed of a finite list of fundamental graphs combined in
specified ways.

Proof involves several classic structure theorems from matching theory
in an extremal setting.

For p < 10, the graphs have order at most 12.

We should “simply” list all graphs of this size and pick the best ones!



Back to Perfect Matchings

Fundamental Graphs for2 < p < 10
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Cp for small p
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Cp for small p

p[ 123456 ]7][8[9]10
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2. Isomorphs: McKay’s Isomorph-Free Generation Method.

3. Pruning: Developed new structural and extremal theorems.
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Computational Method

Developed a computational method from:

1. Augmentations: Lovasz Two Ear Theorem.
2. Isomorphs: McKay’s Isomorph-Free Generation Method.

3. Pruning: Developed new structural and extremal theorems.

Before: Stuck at p < 10 when searching on most 12 vertices.

Now: Found graphs for all p < 27 on up to 22 vertices.



Back to Perfect Matchings

Fundamental Graphs for 11 < p <27
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Cp for small p
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Back to Perfect Matchings

Cp for small p

Blue numbers match conjectured upper bound.

Stolee (ISU)

Cp Not monotonic in p !
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What can you do?

Does this sound interesting? Here are some things you can do:

@ Take MATH 304 (Combinatorics) and/or 314 (Graph Theory)
© Participate in an REU!

© Participate in the Discrete Mathematics Seminar:
http://orion.math.iastate.edu/dept/seminar/dmseminar.htm
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