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2-connected graphs

A graph is 2-connected if there are no cut vertices.

2-connected graphs are exactly the graphs with ear
decompositions.
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Generating by Ear Augmentations

Starting at each cycle, adding all possible ear augmentations
will generate all 2-connected graphs.

LOTS of redundancy!
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Isomorph-free Exhaustive Generation

The goal:

Generate all graphs of a given type with each isomorphism
class represented exactly once.

The recipe:
@ An augmentation (vertex, edge, leaf, ear).

@ A canonical deletion.
@ A pruning procedure.




































Independent sub-trees
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Implementation

Implemented in the TreeSearch library for parallelization in the
Condor scheduler.

Executed on the Open Science Grid, a collection of
supercomputers around the country.
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Generating 2-connected Graphs

N Cn CPU time

5 10 0.01s
6 56 0.11s
7 468 0.26s
8 7123 10.15s
9 194066 5m 17.27s
10 9743542 7h 39m 28.47s
11 | 900969091 | 71d 22h 22m 49.12s
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Generating 2-connected Graphs

N Cn CPU time

5 10 0.01s
6 56 0.11s
7 468 0.26s
8 7123 10.15s
9 194066 5m 17.27s
10 9743542 7h 39m 28.47s
11 | 900969091 | 71d 22h 22m 49.12s

Slower than vertex-augmentations, faster than
edge-augmentations.
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Three Applications

@ Uniquely K;-Saturated Graphs

@ Strength: ear-monotone constraints and sparse family.
@ Edge Reconstruction Conjecture

@ Strength: sparse family and structure of search.

© p-Extremal Graphs
© Sparse family.
@ Ear-monotone constraints.
© Structure of search.
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Application 3: p-Extremal Graphs

A perfect matching (or 1-factor) is a set of edges which cover
each vertex exactly once.

Let ®(G) denote the number of perfect matchings in a graph G.
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Application 3: p-Extremal Graphs

Definition

Let n and p be integers. f(n, p) is the maximum number of
edges in a graph with n vertices and exactly p perfect
matchings.

Definition
A graph on n vertices is p-extremal if it has p perfect matchings
and f(n, p) edges.
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How does f(n, p) behave, and which graphs are p-extremal?




Andrzej Dudek John Schmitt

“On the Size and Structure of Graphs with a Constant
Number of 1-Factors”
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Dudek & Schmitt

@ If G has p perfect matchings, ng vertices and é + c edges,
then for all n > no, f(n,p) > %2 +c.

Definition

The excess of a graph is the value ¢(G) = |E(G)| — ”(46)2.

@ For each p, there exist constants np, ¢, so that for all even

n> np,
2
f(n,p) = T + Cp.
© Computed ¢, forp € {1,...,6}.

© Found structure for p-extremal graphs with p € {1,2, 3}.
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Douglas B. West  Matthew Yancey

“On extremal graphs with a given number of perfect
matchings”
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Hartke, Stolee, West, & Yancey

Q c,>1forallp>2.
@ Bounded np, = O(/p).

© Used naive search to find ¢, and structure of p-extremal
graphs for p < 10.
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The Structure of p-Extremal Graphs

Chambers are the connected components in the subgraph of
edges appearing in perfect matchings (allowable edges).

For G a graph with chambers Gj, ..., Gk,
®(G) =T ©(G).

c(G) < Ly ¢(Gh).
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The Structure of p-Extremal Graphs

p-Extremal Graph
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The Structure of Allowable Edges

A connected graph with all edges allowable is 7-extendable.

Theorem (Lovasz Two-Ears Theorem)

If H is a 1-extendable graph, there is a graded ear
decomposition Hy C Hy C Ho C --- C Hy So that

Q@ Hy = Cyy for some ¢ and Hy = H.

@ Each H; is 1-extendable.

© Each ear augmentation H; C H;,{ uses one or two ears.

v

Graphs which appear “between” two 1-extendable graphs in a
two-ear augmentation are almost 1-extendable graphs.
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The Search Space

Input: p, N, c.

Graphs: 1-extendable and almost 1-extendable graphs H with

@ At most N vertices.
@ At most p perfect matchings.

Solutions: Chambers G with p perfect matchings and
c(G) > c.
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Canonical Deletion

Find an ear in H to delete by priority:

[Almost l-extendable) ( 1-extendable ) ( 1-extendable j

/ { {

[ 1-extendable j ( 1-extendable j (Almost l-extendablej

Unique such choice Minimum length ear Minimum length ear

Minimum canonical Minimum canonical
label of endpoints label of endpoints
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Finding Solutions

How do we transition from 1-extendable graphs to extremal
chambers?
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Finding Solutions

p-Extremal Graph
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Finding Solutions

Definition
A barrierin a graph G with ®(G) > 0is a set X C V(G) so that
co(G—X) = |X|.

In a p-extremal chamber, every barrier is a clique of forbidden
edges.



2-Connected Applications
[e]e]e] Jelele]

Conflicting Barriers

Two barriers X, Y conflict if:
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Conflicting Barriers

Two barriers X, Y conflict if:
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Finding Solutions

{Maximal chamber supergraphs of H}

—

{Maximal sets of non-conflicting barriers in H}
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Pruning and Optimizations

Let H be the current 1-extendable graph and G a best filling.

Q Ifc(G)+2(p— ®(H)) < c, then prune.
@ Let N be the maximum so that

¢(G) +2(p—@(H)) — %(N— n(H))(n(H) -2) > c.

We do not need to augment beyond N vertices.

© If adding an ear at endpoints x, y increases ®(H) beyond
p, never augment on that pair again.
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p | Nop| G Total CPU Time

11114 | 3 43.29s
12114 | 5 44.01s
13|14 | 3 6m 39.80s
14 1 16 | 4 12m 10.40s
15116 | 6 12m 42.72s
16 | 16 | 4 2h 07m 58.60s
17 116 | 4 6h 46m 07.72s
18118 | 5 11h 45m 01.95s
19118 | 4 2d 17h 12m 31.85s
20| 18 | 5 4d 05h 28m 11.79s
21118 | 5 13d 17h 29m 12.45s
22120 | 5 42d 20h 40m 30.41s
23|20 | 5 118d 07h 38m 36.84s
24120 | 6 209d 10h 09m 54.98s
25|20 | 5| 2y 187d 21h 48m 46.31s
26 |20 | 5 | 7y 75d 13h 55m 10.27s
27 |22 | 6 | 10y 247d 21h 03m 13.94s
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p-Extremal Chambers
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Future Work

For p-extremal graphs:

@ Find a “strong” upper bound on ¢ for an infinite family of
values of p.

@ A start: prove the complete graphs on 2t vertices are
p-extremal for p = (2t — 1)!1.
@ Alower bound on ¢, which grows in the limit.



Future Work

Future Work

For the technique:
@ More applications!
© More optimizations?
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Future Work

For the tools:
@ Implement vertex/edge/leaf augmentations.
@ Apply to new problems.
© Compare to current applications.
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Future Work

Application 1: Uniquely K,-Saturated Graphs

Definition
A graph G is uniquely K;-saturated it G contains no K, and for
every edge e € G admits exactly one copy of K; in G+ e.

(a) 1-book (b) 2-book (c) 3-book

Figure: The (r — 2)-books are uniquely K; saturated.



N7

Joshua Cooper Paul Wenger

Two Conjectures:

1. For each r, there are a finite number of uniquely
K;-saturated graphs with no dominating vertex.

2. For each r, every uniquely K;-saturated graph with no
dominating vertex is regular.

Previously verified to 9 vertices.



Future Work

Application 1: Uniquely K,-Saturated Graphs

@ Uniquely K;-saturated graphs have diameter 2 (and are
2-connected).

© Strength: K;-free is a sparse, monotone property.
@ Verified forr =4 and n < 12.
Q Verified for r € {5,6} and n < 11.



New! Joint with Stephen G. Hartke




