{{{id=1| 2+2 /// 4 }}}

I want to evaluate $\sqrt{347}$

{{{id=5| sqrt(347) /// }}} {{{id=2| print N( sqrt(349) ) print N( sqrt(347) ) /// 18.6815416922694 18.6279360101972 }}} {{{id=3| # This is a comment! /// }}} {{{id=4| x = var('x'); x /// }}} {{{id=7| plot(x^2, (x, -5, 5), figsize=[3,3] ) /// }}} {{{id=8| l = [ 1, 2, 3, 4 ]; l /// }}} {{{id=9| l.append(5) l /// }}} {{{id=10| l[2] = 6; l /// }}} {{{id=11| sols = solve( x^3+5*x + 167 == 0 , x ); /// }}} {{{id=12| s0 = sols[0]; r0 = s0.right_hand_side() /// }}} {{{id=13| r0.radical_simplify() /// }}} {{{id=14| for s in sols: r = s.right_hand_side(); print N(r) print "All Done!" /// 2.60227402011780 - 5.03145011178092*I 2.60227402011780 + 5.03145011178092*I -5.20454804023660 All Done! }}} {{{id=15| G = Graph(4) G.show() /// }}} {{{id=16| H = G.complement() H.show(layout="planar") /// }}} {{{id=17| G.add_edge( 0 , 1 ); G.show() /// }}} {{{id=18| G.add_edge(0,2) G.add_edge(1,2) G.add_edge(2,3) G.show() /// }}} {{{id=19| G.add_edge(3,4) G.show() /// }}} {{{id=20| H = Graph( [ [0,1], [0,2], [1,2], [2,3] ] ); H.show() /// }}} {{{id=21| H.adjacency_matrix() /// }}} {{{id=22| F = Graph( matrix([ \ [0,1,1,0,0,1], \ [1,0,1,1,1,1], \ [1,1,0,0,0,1], \ [0,1,0,0,0,1], \ [0,1,0,0,0,1], \ [1,1,1,1,1,0] \ ]) ) F.show() /// }}} {{{id=23| A = matrix([ \ [0,1,1,0,0,1], \ [1,0,1,1,1,1], \ [1,1,0,0,0,1], \ [0,1,0,0,0,1], \ [0,1,0,0,0,1], \ [1,1,1,1,1,0] \ ]); A /// }}} {{{id=24| A.characteristic_polynomial() /// }}} {{{id=25| A.determinant() /// }}} {{{id=26| A.eigenvalues() /// }}} {{{id=28| range(3, 7) /// }}} {{{id=29| range(7) /// }}} {{{id=30| div7 = []; for i in range(100): if i % 7 == 0 : div7.append(i); div7 /// }}} {{{id=31| [ 7*i for i in range(60) ] /// }}} {{{id=32| [ i for i in range(60) if i % 7 == 0 ] /// }}} {{{id=33| graphs.RandomGNP(10, 0.25).show() /// }}} {{{id=34| P = graphs.GrotzschGraph() L = P.line_graph() /// }}}