
MMSConjecture User Guide
Version 1.0

Derrick Stolee
University of Illinois

stolee@illinois.edu

January 7, 2013

Abstract

The MMSConjecture software is an implementation a branch-and-cut method using linear programs
to prove the Manickam-Miklós-Singhi Conjecture for fixed values of k. This software is in support
of the paper “A Branch-and-Cut Strategy for the Manickam-Miklós-Singhi Conjecture” by Hartke and
Stolee [1].

1 Acquiring MMSConjecture

The latest version of MMSConjecture and its documentation is available online as part of the SearchLib
collection at the address

http://www.math.illinois.edu/˜stolee/SearchLib/

MMSConjecture is made available open-source under the GPL 3.0 license.
Fix a workspace directory which contains the MMSConjecture folder. Install the TreeSearch and

Utilities projects into the TreeSearch/ and Utilities/ folders in the workspace. To compile MM-
SConjecture , use a terminal to access the MMSConjecture/src/ folder. There are two different types
of executables:

1. To use GLPK, install GLPK into a directory glpk/ in the workspace directory. Type make -f
Makefile-GLPK to compile mmsconj-glpk.exe.

2. To use CPLEX, install CPLEX into a directory cplex/ in the workspace directory. Type make -f
Makefile-CPLEX to compile mmsconj-cplex.exe.

The executables will be placed in MMSConjecture/bin/

1.1 Acquiring Necessary Libraries

There are two external libraries and two SearchLib projects used by MMSConjecture .

1. GLPK, the GNU Linear Programming Kit, is an open-source linear programming interface. When
using GLPK with MMSConjecture, the exact solver is used.

http://www.gnu.org/software/glpk/

2. CPLEX, the IBM ILOG CPLEX Optimizer, is a commercial solver. An academic license is available.

1

http://www.math.illinois.edu/~stolee/SearchLib/
http://www.gnu.org/software/glpk/

http:
//www-01.ibm.com/software/integration/optimization/cplex-optimizer/

3. TreeSearch is a project in SearchLib that abstracts the structure of a backtrack search in order to
allow for parallelization. TreeSearch is available on the same web site as MMSConjecture . Consult
the TreeSearch documentation for details about the arguments and execution processes.

4. Utilities is a project in SearchLib containing useful objects and functions necessary by other projects
in SearchLib. Utilities is available on the same web site as MMSConjecture .

1.2 Full Directory Structure

For proper compilation, place the different dependencies in the following directory structure:

• MMSConjecture/ – The MMSConjecture project.

– src/ – Contains source code. Compilation occurs here.

– bin/ – The final binaries are placed here.

– scripts/ – Contains shell scripts with the parameters required to verify the conjectures. See
Section 4.

– data/ – Contains data files from previous executions of the programs, including detailed timing
information. See Section 5.

– docs/ – This folder contains documentation, including this guide.

• TreeSearch/ – A support project from SearchLib.

• Utilities/ – A support project from SearchLib.

– src/ – Type make in this directory to compile the Utilities project.

2 Execution

There are three executables in the MMSConjecture project.

• mmsconj-glpk.exe

• mmsconj-cplex.exe

• mmslight-cplex.exe

2.1 mmsconj-glpk.exe and mmsconj-cplex.exe

The first two executables have identical behavior except for the linear program solver implementations.
Note: The mmsconj-cplex.exe executable requires libcplex123.so to be present in the current
directory, and the shell variable ILOG LICENSE FILE to be set to the path of the license file.

mmsconj-*.exe [TreeSearch args] -K # -N # [--target #] [-gm#v#] [--prop
none|gac|sgac|bsgac|pos] [--strong] [--rule balanced|middle|opthalf]

[--proof] [--stochastic] [--branchless]

2

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

• -K # – Let # be the number k, for the size of the partial sums.

• -N # – Let # be the number n of variables.

• --target # – Let # be the target t.

• --strong – If present, will enforce that the set {1, n − k + 2, . . . , n} has negative sum and hence
the non-negative sums will not include the star example.

• -gm#v# – If present, the first # is a number m and the second number # is a value v such that
g(m, k) = v. When m = n − k, this value is used in the initial propagation step (see Algorithm 3
[?]) to create more negative k-sums.

• --stochastic – If present, the propagation step will use STOCHASTICPROPAGATION, a method
for randomly selecting a set and testing feasibility with that set chosen.

• --branchless – If present, the propagation step will use BRANCHLESSSEARCH, which will test
all sets using the LP.

• --prop none|gac|sgac|bsgac|pos – Select the propagation method:

– none – Skips the propagation step. (Not recommended.)

– gac – Global Arc Consistency checks at every step if making a set non-negative would increase
the number of sets to at least the target value, and if so adds the constraint that the set must be
strictly negative (see Algorithm 4 [?]). This is the option used for the performance statistics in
[?].

– sgac – Singleton Global Arc Consistency checks at every step what Global Arc Consistency
would do if we changed any single set to non-negative or positive. If one change results in a
contradiction, then we take the other choice. (Not recommended.)

– bsgac – Branch Singleton Global Arc Consistency selects the set that would be chosen by the
branching rule with the current configuration and tests each branch option. If GAC then reports
a contradiction, it sets the other option without requiring a branch. Useful to reduce the depth of
the search tree, but usually slower. (Not recommended.)

– pos – Positive Propagation performs the check for Global Arc Consistency (which forces some
sets to be negative) and then checks remaining sets if setting them to be strictly negative keeps
the linear program feasible. (This is very similar to performing BRANCHLESSSEARCHat every
search node.) If the LP check reports infeasible, the set is set to positive (see Algorithm 5 [1]).
This check greatly slows the search, but reduces the search tree significantly. This option is used
when printing the proof for the case k = 4.

• --rule balanced|middle|opthalf – Select the branching rule.

– balanced – Select the set S which maximizes min{|L(S)∩ C∗|, |R(S)∩ C∗|}. The goal is to
guarantee the most sets change when S is set to be negative or non-negative. This option is used
in the performance statistics.

– middle – Select the set which has the median co-lexicographic index among sets in C∗. (Not
recommended.)

– opthalf – Using the current LP optimal vector x, find the set S with current sum
∑

i∈S xi
closest to −1

2 , since the branch will either select the sum to be at least 0 or at most −1. (Not
recommended.)

3

• --proof – If present, the steps of a proof will be written to standard out. In particular, at the
propagation steps, the choices of sets to set as non-negative or negative will be written. Also, at the
branching steps, cases will be created to split the search tree. Not recommended in general, but used
to write the proofs for the cases k = 3 and k = 4 in the Appendix of [1].

2.2 mmslight-cplex.exe

mmslight-cplex.exe [TreeSearch args] -K # -N # [--target #] [-gm#v#]
[--strong] [--stochastic] [--steps #] [--samples #] [--sampletime #]

• -K # – Let # be the number k, for the size of the partial sums.

• -N # – Let # be the number n of variables.

• --target # – Let # be the target t.

• --strong – If present, will enforce that the set {1, n − k + 2, . . . , n} has negative sum and hence
the non-negative sums will not include the star example.

• -gm#v# – If present, the first # is a number m and the second number # is a value v such that
g(m, k) = v. When m = n − k, this value is used in the initial propagation step (see Algorithm 3
[?]) to create more negative k-sums.

• --stochastic – If present, the propagation step will use STOCHASTICPROPAGATION, a method
for randomly selecting a set and testing feasibility with that set chosen.

• --branchless – If present, the propagation step will use BRANCHLESSSEARCH, which will test
all sets using the LP.

• --steps # – Specify the number of steps in the probability distribution for selecting a random set
in C∗ (weighted to the left).

• --samples # – Specify the number M such that if M random samples are not decided to be
positive or negative in STOCHASTICPROPAGATION, we should terminate the propagation and return
to branching.

• --sampletime # – Specify the maximum number of seconds to spend in STOCHASTICPROPA-
GATION.

3 TreeSearch Arguments

• -k # — The killtime: How many seconds before halting the process and reporting a partial job.

• -m # — The maximum depth: the maximum number of steps to go before halting (or in generation
mode, a new job is written at this depth).

• run — Run mode: The input jobs are run until finished or the killtime is reached.

• generate — Generation mode: The input jobs are run and new jobs are listed when reaching the
maximum depth.

• --maxjobs # — The maximum number of jobs to generate before halting with a partial job (de-
fault: 1000).

4

• --maxsols # — The maximum number of solutions to output before halting with a partial job
(default: 100).

4 Execution with CPLEX

Our implementation uses IBM ILOG CPLEX version 12.3. To compile and execute any file using CPLEX,
we require the binary file libcplex123.so in the current directory. Further, for execution, the environ-
ment parameter ILOG LICENSE FILEmust be set to the file containing the license information. Typically,
this is contained in cplex/licenses/access.ilm.

5 Scripts

In the scripts/ folder, there are some files which allow for execution of the

6 Data

The data/ folder contains some output from previous executions, as well as tabulated performance data.

References

[1] S. G. Hartke, D. Stolee, A Branch-And-Cut Strategy for the Manickam-Miklós-Singhi Conjecture,
preprint (2013).

[2] D. Stolee, TreeSearch user guide, available at http://www.math.illinois.edu/ stolee/SearchLib/TreeSearch.pdf
(2011).

5

http://www.math.illinois.edu/~stolee/SearchLib/TreeSearch.pdf

	Acquiring MMSConjecture
	Acquiring Necessary Libraries
	Full Directory Structure

	Execution
	mmsconj-glpk.exe and mmsconj-cplex.exe
	mmslight-cplex.exe

	TreeSearch Arguments
	Scripts
	Data

