MATH 412, SPRING 2013 - HOMEWORK 5

WARMUP PROBLEMS: Section 2.1 \#33 Section $2.3 \# 2,3,4,5,22,24,28$. Do not write these up!

EXTRA PROBLEMS: Section $2.2 \# 23,24,25,26$. Section $2.3 \# 6,8,9,11,12,13$, $17,18,19,20,22,29$. Do not write these up!

WRITTEN PROBLEMS: Five of the following six. Due Wednesday, February 20.

1. Use the method of Prufer codes to show that the number of rooted forests with vertex set $[n]$ whose set of roots is $[k]$ is $k n^{n-k-1}$. That is, let S be the set of rooted forests on $[n]$ with root set $[k]$. For $F \in S$, form a list by iteratively deleting the largest (nonroot) leaf and recording its neighbor, until only the roots remain. Prove that this establishes a bijection from S to $[n]^{n-k-1}[k]$.
2. An up/down labeling is a graceful labeling for which there exists a critical value α such that every edge joins vertices with labels above and below α. Prove that every caterpillar has an up/down labeling. Prove that the 7 -vertex tree that is not a caterpillar has no up/down labeling.
3. Prim's Algorithm grows a spanning tree from a given vertex of a connected weighted graph G, iteratively adding the cheapest edge from a vertex already reached to a vertex not yet reached, finishing when all the vertices of G have been reached. (Ties are broken arbitrarily.) Prove that Prim's Algorithm produces a minimum-weight spanning tree of G.
4. Let G be a weighted graph.
a) Let T be a minimum-weight spanning tree. Prove that T omits some heaviest edge from every cycle in G.
b) Let C be a cycle in G, and let e be an edge of maximum weight on C. Prove that there is a minimum-weight spanning tree not containing e.
c) Use part (b) to prove that iteratively deleting a heaviest non-cut-edge until the remaining graph is acyclic produces a minimum-weight spanning tree.
5. Breadth-First Search.
a) Explain how to use BFS to compute the girth of a graph.
b) Explain how to use BFS to quickly test whether a graph is bipartite. The algorithm should not need to consider an edge more than twice.
6. Consider n messages occurring with probabilities p_{1}, \ldots, p_{n}, such that each p_{i} is a power of $1 / 2\left(\right.$ each $p_{i} \geq 0$ and $\left.\sum p_{i}=1\right)$.
a) Prove that the two least likely messages have equal probability.
b) Prove that the expected message length of the Huffman code for this distribution is $-\sum p_{i} \lg p_{i}$.
