MATH 412, SPRING 2013 - HOMEWORK 7

WARMUP PROBLEMS: Section $3.2 \# 9$, 10. Section $3.3 \# 1,2,4,6$. Section $4.1 \# 1$, $2,4,5$. Do not write these up!

EXTRA PROBLEMS: Section $3.2 \# 12$, 13. Section $3.3 \# 7,10,13-16,18-20,23,24$, 26. Section $4.1 \# 8,9,10,11,12,17,20$. Do not write these up!

WRITTEN PROBLEMS: Five of the following six. Due Wednesday, March 6.

1. Prove that if man x is paired with woman a in some stable matching, then a does not reject x when the Gale-Shapley Proposal Algorithm is run with men proposing. Conclude that among all stable matchings, every man is as happy in the matching produced by this algorithm as in any stable matching. (Hint: Consider the first occurrence of such a rejection.)
2. Extension of König-Egerváry Theorem to general graphs. Given a graph G, let S_{1}, \ldots, S_{k} and T be subsets of $V(G)$ such that each S_{i} has odd size. These sets form a generalized cover of G if every edge of G has at least one endpoint in T or both endpoints in some S_{i}. The weight of a generalized cover is $|T|+\sum\left\lfloor\left|S_{i}\right| / 2\right\rfloor$. Let $\beta^{*}(G)$ be the minimum weight of a generalized cover. Prove that $\alpha^{\prime}(G)=\beta^{*}(G)$. (Hint: Apply Corollary 3.3.7. Comment: Every vertex cover is a generalized cover, so $\beta^{*}(G) \leq \beta(G)$.)
3. Let G be a k-regular graph of even order that remains connected when any $k-2$ edges are deleted. Use Remark 3.3.5 to prove that every edge of G belongs to some 1 -factor. (Comment: This strengthens Exercise 3.3.16.)
4. Prove that a 3 -regular simple graph has a 1 -factor if and only if it decomposes into copies of P_{4}.
5. Let M be a matching in a graph G, and let u be an M-unsaturated vertex. Prove that if G has no M-augmenting path that starts at u, then u is unsaturated in some maximum matching in G.
6. Connectivity. Let G be an n-vertex graph.
a) Prove that $\kappa(G)=\delta(G)$ if G is simple and $\delta(G) \geq n-2$. Prove that this is best possible for each $n \geq 4$ by constructing a simple n-vertex graph with minimum degree $n-3$ and connectivity less than $n-3$.
b) Prove that if $\delta(G)=n-3$ and \bar{G} contains no 4 -cycle, then $\kappa(G)=n-3$.
