MATH 412, Spring 2012 - Homework 8

WARMUP PROBLEMS: Section 4.1: \#6, 7, 30. Section 4.2: \#1, 2, 4, 6. Do not write these up!
EXTRA PROBLEMS: Section 4.1: \# 31, 32. Section 4.2: \# 7, 8, 11, 12, 13, 14, 15, 19, 20, $21,23,27,32,35,36,37$. Do not write these up!
WRITTEN PROBLEMS: Do five of the following six. Due Wednesday, March 13.

1. $\kappa^{\prime}(G)=\delta(G)$ for diameter 2. Let G be a simple graph with diameter 2 , and let $[S, \bar{S}]$ be a minimum edge cut with $|S| \leq|\bar{S}|$.
a) Prove that every vertex of S has a neighbor in \bar{S}.
b) Use part (a) and Corollary 4.1.13 to prove that $\kappa^{\prime}(G)=\delta(G)$.
2. (The block-cutpoint graph). Let H be the block-cutpoint graph of a graph G that has a cut-vertex.
a) Prove that H is a forest.
b) Prove that G has at least two blocks each of which contains exactly one cut-vertex of G.
c) Prove that a graph G with k components has exactly $k+\sum_{v \in V(G)}(b(v)-1)$ blocks, where $b(v)$ is the number of blocks containing v.
d) Prove that every graph has fewer cut-vertices than blocks.
3. Let G be a 2-connected graph. Prove that if T_{1} and T_{2} are two spanning trees of G, then T_{1} can be transformed into T_{2} by a sequence of operations in which a leaf is removed and reattached using another edge of G.
4. Suppose that $\kappa(G)=k$ and $\operatorname{diam} G=d$. Prove that $n(G) \geq k(d-1)+2$ and $\alpha(G) \geq$ $\lceil(1+d) / 2\rceil$. For each $k \geq 1$ and $d \geq 2$, construct a graph for which equality holds in both bounds (simultaneously).
5. Let X and Y be disjoint sets of vertices in a k-connected graph G. Let $u(x)$ for $x \in X$ and $w(y)$ for $y \in Y$ be nonnegative integers such that $\sum_{x \in X} u(x)=\sum_{y \in Y} w(y)=k$. Prove that G has k pairwise internally disjoint X, Y-paths so that $u(x)$ of them start at $x \in X$ and $w(y)$ of them end at $y \in Y$.
6. Prove that applying the expansion operation of Example 1.3.26 to a 3-connected graph yields a 3 -connected graph. Obtain the Petersen graph from K_{4} by expansions. (Comment: Tutte prove that a 3 -regular graph is 3 -connected if and only if it arises from K_{4} by a sequence of these operations.)
