MATH 412, SPRING 2013 - HOMEWORK 10

WARMUP PROBLEMS: Section $5.1 \# 7,12,21$. Section $5.2 \# 1,2$.
EXTRA PROBLEMS: Section $5.1 \# 22,23,29,32,38,39,41,47,48,51,54$. Section $5.2 \# 6,7,9,14,17,21$. Do not write these up!

WRITTEN HOMEWORK: Do five of the following six. Due Wednesday, April 3.

1. a) Prove that every graph G has a vertex ordering relative to which greedy coloring uses $\chi(G)$ colors.
b) For all $k \in \mathbb{N}$, construct a tree T_{k} with maximum degree k and an ordering σ of $V\left(T_{k}\right)$ such that greedy coloring relative to the ordering σ uses $k+1$ colors. (Hint: Use induction and construct the tree and ordering simultaneously. Comment: Thus the performance ratio of greedy coloring to optimal coloring can be as bad as $(\Delta(G)+1) / 2$.)
2. The Kneser graph $K(n, k)$ is the disjointness graph of the k-element subsets of $[n]$. That is, the vertex set consists of all k-element subsets of $[n]$, and two vertices are adjacent if they are disjoint k-sets. For example, the Petersen graph is $K(5,2)$. Prove that $\chi(K(n, k)) n-2 k+2$ by covering the vertices with $n-2 k+2$ independent sets. Prove that this is optimal when $n=2 k+1$. (Comment: Lovász [1978] proved Kneser's conjecture that always $\chi(K(n, k))=n-2 k+2$.)
3. a) Prove that $\chi(G)+\chi(\bar{G}) \leq n(G)+1$ for every graph G.
b) Let G be an n-vertex graph, and let $c=(n+1) / \alpha(G)$. Use part (a) to prove that $\chi(G) \cdot \chi(\bar{G}) \leq(n+1)^{2} / 4$, and use this to prove that $\chi(G) \leq c(n+1) / 4$. For each odd n, construct a graph such that $\chi(G)=c(n+1) / 4$.
4. Improvement of Brooks' Theorem.
a) Let k_{1}, \ldots, k_{t} be positive integers with sum k. Prove that the vertex set of any graph G with $\Delta(G)<k$ can be partitioned into sets V_{1}, \ldots, V_{t} such that $\Delta\left(G\left[V_{i}\right]\right)<k_{i}$ for $1 \leq i \leq t$. (Hint: Prove that the partition minimizing $\sum e\left(G_{i}\right) / k_{i}$ works.)
b) For $4 \leq r \leq \Delta(G)+1$, use part (a) to prove that $\chi(G) \leq\left\lceil\frac{r-1}{r}(\Delta(G)+1)\right\rceil$ when G has no r-clique.
5. Let $G_{1}=K_{1}$. For $k>1$, construct G_{k} as follows. To the disjoint union $G_{1}+\cdots+G_{k-1}$, and add an independent set T of size $\prod_{i=1}^{k-1} n\left(G_{i}\right)$. For each choice of $\left(v_{1}, \ldots, v_{k-1}\right)$ in $V\left(G_{1}\right) \times \cdots \times V\left(G_{k-1}\right)$, let one vertex of T have neighborhood $\left\{v_{1}, \ldots, v_{k-1}\right\}$. (In the sketch of G_{4} below, neighbors are shown for only two elements of T.)
a) Prove that $\omega\left(G_{k}\right)=2$ and $\chi\left(G_{k}\right)=k$.
b) Prove that G_{k} is k-critical.

6. Turán's proof of Turán's Theorem, including uniqueness.
a) Prove that a maximal simple graph having no $r+1$-clique has an r-clique.
b) Prove that $e\left(T_{n, r}\right)=\binom{r}{2}+(n-r)(r-1)+e\left(T_{n-r, r}\right)$.
c) Use parts (a) and (b) to prove Turán's Theorem by induction on n, including the characterization of graphs achieving the bound.
