MATH 412, SPRING 2013 - HOMEWORK 11

WARMUP PROBLEMS: Section $5.2 \# 3,4,5$. Section $6.1 \# 1-5,7,8,11$.
EXTRA PROBLEMS: Section $5.2 \# 25,26,29,31,32,37,40$. Section $6.1 \# 13,14$, $15,17,20,21,23,24,27,33$.

WRITTEN HOMEWORK: Do five of the following six. Due Wed., April 10.

1. Let G be a 4 -critical graph having a separating set S of size 4 . Prove that $G[S]$ has at most four edges.
2. K_{4}-subdivisions.
a) Prove that every simple graph with minimum degree at least 3 contains a $K_{4}{ }^{-}$ subdivision. (Hint: Prove the stronger result that every nontrivial simple graph with at most one vertex of degree less than 3 contains a K_{4}-subdivision. The proof of Theorem 5.2 .20 already shows that every 3 -connected graph contains a K_{4}-subdivision.)
b) Conclude from part (a) that if $n(G) \geq 3$ and G does not contain a K_{4}-subdivision, then $e(G) \leq 2 n(G)-3$. Give a construction to show that the bound is best possible.
3. Prove that every n-vertex plane graph isomorphic to its dual has $2 n-2$ edges. For all $n \geq 4$, construct a simple n-vertex plane graph isomorphic to its dual.
4. Let G be an n-vertex simple planar graph with girth k, where k is finite. Prove that G has at most $(n-2) \frac{k}{k-2}$ edges. Use this to prove that the Petersen graph is nonplanar.
5. Let ℓ be the length of a longest cycle in a planar triangulation G. Prove that G has cycles of all lengths from 3 through ℓ.
6. Prove that every simple planar graph with at least four vertices has at least four vertices with degree less than 6 . For each even value of n with $n \geq 8$, construct an n-vertex simple planar graph G that has exactly four vertices with degree less than 6 .
