An example of the dual simplex method

Suppose we are given the problem

$$
\text { Minimize } z=2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}
$$

subject to

$$
\left\{\begin{array}{cccccc}
x_{1} & -x_{2} & +x_{3} & -x_{4} & \geq 10, \tag{1}\\
x_{1} & -2 x_{2} & +3 x_{3} & -4 x_{4} & \geq & 6, \\
3 x_{1} & -4 x_{2} & +5 x_{3} & -6 x_{4} & \geq & 15 \\
x_{1}, & x_{2}, & x_{3}, & x_{4} & \geq & 0 .
\end{array}\right.
$$

If we would have inequalities \leq instead of \geq, then the usual simplex would work nicely. The two-phase method is more tedious. But since all coefficients in $z=$ $2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}$ are non-negative, we are fine for the dual simplex.

Multiply the equations by -1 and add to each of the equations its own variable. Then we get the following tableau.

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	$x_{0}=-z$	0	2	3	4	5	0	0
x_{5}	-10	-1	1	-1	1	1	0	0
x_{6}	-6	-1	2	-3	4	0	1	0
x_{7}	-15	-3	4	-5	6	0	0	1

Choose Row 1 to pivot on. The ratio for x_{1} is better than for x_{3}, so pivot on $a_{1,1}$. After pivoting, we get

$x_{0}=-z$		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	-20	0	5	2	7	2	0	0
x_{1}	10	1	-1	1	-1	-1	0	0
x_{6}	4	0	1	-2	3	-1	1	0
x_{7}	15	0	1	-2	3	-3	0	1

Now every $a_{i, 0}$ for $i>0$ is nonnegative. So, the tableau is optimal. But suppose that the boss adds now the new restriction:

$$
x_{1}+2 x_{2}+3 x_{3}-4 x_{4} \leq 8 .
$$

With the dual simplex, we do not need to start from scratch. We simply add the new row and one more column to our final tableau.

$x_{0}=-z$		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	-20	0	5	2	7	2	0	0	0
x_{1}	10	1	-1	1	-1	-1	0	0	0
x_{6}	4	0	1	-2	3	-1	1	0	0
x_{7}	15	0	1	-2	3	-3	0	1	0
x_{8}	8	1	2	3	-4	0	0	0	1

Excluding from the last row x_{1}, x_{6} and x_{7}, we get the tableau

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
	$x_{0}=-z$	x_{8}						
	-20	0	5	2	7	2	0	0
x_{1}	10	1	-1	1	-1	-1	0	0
x_{6}	4	0	1	-2	3	-1	1	0
x_{7}	15	0	1	-2	3	-3	0	0
x_{8}	-2	0	3	2	-3	1	0	0
x_{8}		1	0					

Note that if in the last row there were no -3 , then the LP would be infeasible. Now we pivot on x_{4} :

		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	$x_{0}=-z$	$-74 / 3$	0	12	$20 / 3$	0	$13 / 3$	0	0
x_{1}	$32 / 3$	1	-2	$1 / 3$	0	$-4 / 3$	0	0	$-1 / 3$
x_{6}	2	0	4	0	0	0	1	0	1
x_{7}	13	0	4	0	0	-2	0	1	1
x_{4}	$2 / 3$	0	-1	$-2 / 3$	1	$-1 / 3$	0	0	$-1 / 3$

Thus we got a solution again.

