An example of the revised 2-phase simplex method

Suppose we are given the problem

$$
\text { Minimize } z=-19 x_{1}-13 x_{2}-12 x_{3}-17 x_{4}
$$

subject to

$$
\left\{\begin{array}{cc}
3 x_{1}+2 x_{2}+x_{3}+2 x_{4} & =225 \tag{1}\\
x_{1}+x_{2}+x_{3}+x_{4} & =117, \\
4 x_{1}+3 x_{2}+3 x_{3}+4 x_{4} & =420 \\
x_{1}, & x_{2},
\end{array} x_{3}, \quad x_{4}=0 .\right.
$$

Add to each of the equations its own variable y_{i} and consider the auxiliary problem of the minimization of $\xi=y_{1}+y_{2}+y_{3}$. Subtracting each equation from Row 0 we get the following tableau.

		y_{1}	y_{2}	y_{3}	x_{1}	x_{2}	x_{3}
	$y_{0}=-\xi$	x_{4}					
	-762	0	0	0	-8	-6	-5
y_{1}	225	1	0	0	3	2	1
y_{2}	2						
	117	0	1	0	1	1	1
y_{3}	420	0	0	1	4	3	3

The first four columns of this tableau form our matrix CARRY-0. Following Bland's Rule, the pivot column corresponds to x_{1}. The best ratio is in Row 1. Pivoting, we calculate only elements in the first four columns. Our CARRY-1 is

$y_{0}=-\xi$		y_{1}	y_{2}	y_{3}
	-162	$8 / 3$	0	0
x_{1}	75		0	0
y_{2}	42	$-1 / 3$	1	0
	y_{3}	120	$-4 / 3$	0

Now we calculate \widetilde{d}_{j} using the formula

$$
\begin{equation*}
\tilde{d}_{j}=d_{j}-\pi^{T} A_{j}, \tag{2}
\end{equation*}
$$

where $-\pi^{T}$ is the vector in the last 3 entries of Row 0 , and A_{j} is the j th column of the original matrix A. Since x_{1} is in the basis, we first try \widetilde{d}_{2} :

$$
\widetilde{d}_{2}=-6+(8 / 3,0,0)\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)=-6+16 / 3=-2 / 3<0 .
$$

So we will pivot on x_{2}. We calculate the column \widetilde{A}_{2} using the formula

$$
\begin{equation*}
\widetilde{A}_{j}=B^{-1} A_{j} \tag{3}
\end{equation*}
$$

where B^{-1} is formed by the last 3 columns and 3 rows of the last tableau. We have $\tilde{A}_{2}=\left(\begin{array}{rrr}1 / 3 & 0 & 0 \\ -1 / 3 & 1 & 0 \\ -4 / 3 & 0 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{l}2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right)$. Adding column $\left(\begin{array}{c}-2 / 3 \\ 2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right)$ to the last tableau and pivoting on the first row we get CARRY-2:

$$
\begin{array}{|c|c|r|r|r|}
\cline { 2 - 4 } & & y_{1} & y_{2} & y_{3} \\
\cline { 2 - 5 } y_{0}=-\xi & -87 & 3 & 0 & 0 \\
\cline { 2 - 5 } x_{2} & 225 / 2 & 1 / 2 & 0 & 0 \\
\cline { 2 - 5 } y_{2} & 9 / 2 & -1 / 2 & 1 & 0 \\
y_{3} & 165 / 2 & -3 / 2 & 0 & 1 \\
\cline { 2 - 5 } & &
\end{array}
$$

Since x_{2} is in the basis and x_{1} just got out of it, we first calculate \widetilde{d}_{3} :

$$
\widetilde{d}_{3}=-5+(3,0,0)\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)=-2<0
$$

Then similarly to above $\tilde{A}_{3}=\left(\begin{array}{rrr}1 / 2 & 0 & 0 \\ -1 / 2 & 1 & 0 \\ -3 / 2 & 0 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{l}1 / 2 \\ 1 / 2 \\ 3 / 2\end{array}\right)$. Adding column $\left(\begin{array}{c}-2 \\ 1 / 2 \\ 1 / 2 \\ 3 / 2\end{array}\right)$ to the last tableau and pivoting on the second row we get CARRY-3:

$$
\begin{array}{r|r|r|r|r|}
& & y_{1} & y_{2} & y_{3} \\
\cline { 2 - 5 } y_{0}=-\xi & -69 & 1 & 4 & 0 \\
\cline { 2 - 5 } x_{2} & -69 & 1 & -1 & 0 \\
x_{3} & 9 & -1 & 2 & 0 \\
\cline { 2 - 5 } y_{3} & 69 & 0 & -3 & 1 \\
\cline { 2 - 5 } &
\end{array}
$$

Now we should check \widetilde{d}_{1} again and it turns out to be negative:

$$
\widetilde{d}_{1}=-8+(1,4,0)\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)=-1<0 .
$$

Then $\widetilde{A}_{1}=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -3 & 1\end{array}\right)\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$. Adding column $\left(\begin{array}{c}-1 \\ 2 \\ -1 \\ 1\end{array}\right)$ to the last tableau and pivoting on the first row we get CARRY-4:

		y_{1}	y_{2}	y_{3}
$y_{0}=-\xi$	-15	$3 / 2$	$7 / 2$	0
	x_{1}	54	$1 / 2$	$-1 / 2$
x_{3}	63	$-1 / 2$	$3 / 2$	0
	y_{3}	15	$-1 / 2$	$-5 / 2$

Note that x_{1} first entered the basis, then exited it, and now entered again. Since x_{1} and x_{3} are in the basis and x_{2} just got out of it, we calculate \widetilde{d}_{4} :

$$
\widetilde{d}_{4}=-7+(3 / 2,7 / 2,0)\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)=-1 / 2<0
$$

Then $\widetilde{A}_{4}=\left(\begin{array}{rrr}1 / 2 & -1 / 2 & 0 \\ -1 / 2 & 3 / 2 & 0 \\ -1 / 2 & -5 / 2 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)=\left(\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right)$. Adding column $\left(\begin{array}{c}-1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right)$ to the last tableau and pivoting on the last row we get CARRY-5:

$y_{0}=-\xi$		y_{1}	y_{2}	y_{3}
	0	1	1	1
	39	1	2	-1
	48	0	4	-1
x_{4}	30	-1	-5	2

Thus we found a basic feasible solution of the original problem. Now we replace the row $-\mathbf{d}_{B}^{T} B^{-1}$ (the last 3 entries) by the row

$$
-\mathbf{c}_{B}^{T} B^{-1}=-(-19,-12,-17)\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 4 & -1 \\
-1 & -5 & 2
\end{array}\right)=(2,1,3) .
$$

Also, the current value of $-z$ is

$$
-\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}=(2,1,3)\left(\begin{array}{l}
225 \\
117 \\
420
\end{array}\right)=1827
$$

Hence, our CARRY-6 is

		y_{1}	y_{2}	y_{3}
$x_{0}=-z$	1827	2	1	3
x_{1}	39	1	2	-1
x_{3}	48	0	4	-1
x_{4}	30	-1	-5	2

Now check $\widetilde{c}_{1}=-19+(2,1,3)\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)=0, \widetilde{c}_{2}=-13+(2,1,3)\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)=14>0$, $\widetilde{c}_{3}=-12+(2,1,3)\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)=0$, and $\widetilde{c}_{4}=-17+(2,1,3)\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)=0$. Since there are no negative \widetilde{c}_{j}, the optimal value is -1827 attained at $(39,0,48,30)$.

