An example of the revised 2-phase simplex method

Suppose we are given the problem

Minimize
$$z = -19x_1 - 13x_2 - 12x_3 - 17x_4$$

subject to

$$\begin{cases}
3x_1 +2x_2 +x_3 +2x_4 = 225, \\
x_1 +x_2 +x_3 +x_4 = 117, \\
4x_1 +3x_2 +3x_3 +4x_4 = 420 \\
x_1, x_2, x_3, x_4 \ge 0.
\end{cases} (1)$$

Add to each of the equations its own variable y_i and consider the auxiliary problem of the minimization of $\xi = y_1 + y_2 + y_3$. Subtracting each equation from Row 0 we get the following tableau.

$$y_0 = -\xi \begin{vmatrix} y_1 & y_2 & y_3 & x_1 & x_2 & x_3 & x_4 \\ -762 & 0 & 0 & 0 & -8 & -6 & -5 & -7 \\ y_1 & 225 & 1 & 0 & 0 & 3 & 2 & 1 & 2 \\ y_2 & 117 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ y_3 & 420 & 0 & 0 & 1 & 4 & 3 & 3 & 4 \end{vmatrix}$$

The first four columns of this tableau form our matrix CARRY-0. Following Bland's Rule, the pivot column corresponds to x_1 . The best ratio is in Row 1. Pivoting, we calculate only elements in the first four columns. Our CARRY-1 is

		y_1	y_2	y_3
$y_0 = -\xi$	-162	8/3	0	0
x_1	75		0	0
y_2	42	-1/3	1	0
y_3	120	-4/3	0	1

Now we calculate \tilde{d}_j using the formula

$$\tilde{d}_i = d_i - \pi^T A_i, \tag{2}$$

where $-\pi^T$ is the vector in the last 3 entries of Row 0, and A_j is the jth column of the original matrix A. Since x_1 is in the basis, we first try \tilde{d}_2 :

$$\widetilde{d}_2 = -6 + (8/3, 0, 0) \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = -6 + 16/3 = -2/3 < 0.$$

So we will pivot on x_2 . We calculate the column \widetilde{A}_2 using the formula

$$\tilde{A}_j = B^{-1} A_j, \tag{3}$$

where B^{-1} is formed by the last 3 columns and 3 rows of the last tableau. We have

$$\widetilde{A}_2 = \begin{pmatrix} 1/3 & 0 & 0 \\ -1/3 & 1 & 0 \\ -4/3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/3 \\ 1/3 \end{pmatrix}$$
. Adding column $\begin{pmatrix} -2/3 \\ 2/3 \\ 1/3 \\ 1/3 \end{pmatrix}$ to the last

tableau and pivoting on the first row we get CARRY-2:

		y_1	y_2	y_3
$y_0 = -\xi$	-87	3	0	0
x_2	225/2	1/2	0	0
y_2	9/2	-1/2	1	0
y_3	165/2	-3/2	0	1

Since x_2 is in the basis and x_1 just got out of it, we first calculate \tilde{d}_3 :

$$\tilde{d}_3 = -5 + (3, 0, 0) \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = -2 < 0.$$

Then similarly to above
$$\widetilde{A}_3=\begin{pmatrix} 1/2 & 0 & 0\\ -1/2 & 1 & 0\\ -3/2 & 0 & 1 \end{pmatrix}\begin{pmatrix} 1\\ 1\\ 3 \end{pmatrix}=\begin{pmatrix} 1/2\\ 1/2\\ 3/2 \end{pmatrix}$$
. Adding column

$$\begin{pmatrix} -2\\1/2\\1/2\\3/2 \end{pmatrix}$$
 to the last tableau and pivoting on the second row we get CARRY-3:

$$y_0 = -\xi \begin{vmatrix} y_1 & y_2 & y_3 \\ -69 & 1 & 4 & 0 \\ x_2 & 108 & 1 & -1 & 0 \\ x_3 & 9 & -1 & 2 & 0 \\ y_3 & 69 & 0 & -3 & 1 \end{vmatrix}$$

Now we should check \tilde{d}_1 again and it turns out to be negative:

$$\tilde{d}_1 = -8 + (1, 4, 0) \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} = -1 < 0.$$

Then
$$\widetilde{A}_1 = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
. Adding column $\begin{pmatrix} -1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$ to the last

tableau and pivoting on the first row we get CARRY-4:

		y_1	y_2	y_3
$y_0 = -\xi$	-15	3/2	7/2	0
x_1	54	1/2	-1/2	0
x_3	63	-1/2	3/2	0
y_3	15	-1/2	-5/2	1

Note that x_1 first entered the basis, then exited it, and now entered again. Since x_1 and x_3 are in the basis and x_2 just got out of it, we calculate \tilde{d}_4 :

$$\widetilde{d}_4 = -7 + (3/2, 7/2, 0) \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = -1/2 < 0.$$

Then
$$\widetilde{A}_4 = \begin{pmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 3/2 & 0 \\ -1/2 & -5/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$
. Adding column $\begin{pmatrix} -1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$ to

the last tableau and pivoting on the last row we get CARRY-5:

$$y_0 = -\xi \begin{vmatrix} y_1 & y_2 & y_3 \\ 0 & 1 & 1 & 1 \\ x_1 & 39 & 1 & 2 & -1 \\ x_3 & 48 & 0 & 4 & -1 \\ x_4 & 30 & -1 & -5 & 2 \end{vmatrix}$$

Thus we found a basic feasible solution of the original problem. Now we replace the row $-\mathbf{d}_B^T B^{-1}$ (the last 3 entries) by the row

$$-\mathbf{c}_B^T B^{-1} = -(-19, -12, -17) \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ -1 & -5 & 2 \end{pmatrix} = (2, 1, 3).$$

Also, the current value of -z is

$$-\mathbf{c}_B^T B^{-1} \mathbf{b} = (2, 1, 3) \begin{pmatrix} 225 \\ 117 \\ 420 \end{pmatrix} = 1827.$$

Hence, our CARRY-6 is

$$x_0 = -z \begin{vmatrix} x_1 & y_1 & y_2 & y_3 \\ 1827 & 2 & 1 & 3 \\ x_1 & 39 & 1 & 2 & -1 \\ x_3 & 48 & 0 & 4 & -1 \\ x_4 & 30 & -1 & -5 & 2 \end{vmatrix}$$

Now check
$$\tilde{c}_1 = -19 + (2, 1, 3) \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} = 0$$
, $\tilde{c}_2 = -13 + (2, 1, 3) \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = 14 > 0$, $\tilde{c}_3 = -12 + (2, 1, 3) \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = 0$, and $\tilde{c}_4 = -17 + (2, 1, 3) \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = 0$. Since there are no negative \tilde{c}_j , the optimal value is -1827 attained at $(39, 0, 48, 30)$.