MATH 482, Spring 2013 - Homework 2
 Due Wednesday, 02/13.

Solve 4 of the first 5 problems below, and also solve problem 6. Students registered for 4 credits must solve all problems.

1. [5pts] Check whether the vector $[3,-1,0,2]$ is an optimal solution to the problem

$$
\max 6 x_{1}+x_{2}-x_{3}-x_{4}
$$

subject to

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}+x_{3}+x_{4} & \leq 5, \\
3 x_{1}+x_{2}-x_{3} & \leq 8, \\
x_{2}+x_{3}+x_{4} & =1, \\
x_{3}, x_{4} & \geq 0 .
\end{aligned}\right.
$$

2. [5pts] Solve with two-phase simplex algorithm the LP represented by the tableau below.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0	-3	-4	0	0	0
6	2	1	1	0	0
2	1	-2	0	1	0
1	-3	0	9	9	1

The second row (starting 0) corresponds to the cost vector.
3. [5pts] Prove the theorem due to P. Gordan (1873) that the system $\mathbf{A x}<\mathbf{0}$ is unsolvable if and only if the system $\mathbf{y}^{\mathbf{T}} \mathbf{A}=\mathbf{0}, \quad \mathbf{y} \geq \mathbf{0}, \quad \mathbf{y} \neq \mathbf{0}$ is solvable. (Hint: In order to apply duality theorems, replace the system $\mathbf{A x}<\mathbf{0}$ of strict inequalities by a system of nonstrict inequalities that is solvable if and only if $\mathbf{A x}<\mathbf{0}$ is solvable).
4. [5pts] Consider the network below.

Write the LP for the shortest-paths problem and the dual problem.
5. [5pts] Demonstrate an optimal solution to the primal LP in Problem 4 and use duality to prove optimality.
6. [10pts] Use the dual simplex method to find an optimal solution to the problem

$$
\text { Minimize } z=7 x_{1}+x_{2}+3 x_{3}+x_{4}
$$

subject to

$$
\left\{\begin{aligned}
2 x_{1}-3 x_{2}-x_{3}+x_{4} & \geq 8 \\
6 x_{1}+x_{2}+2 x_{3}-2 x_{4} & \geq 12, \\
-x_{1}+x_{2}+x_{3}+x_{4} & \geq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}\right.
$$

The additional constraints

$$
\begin{aligned}
x_{1}+5 x_{2}+x_{3}+7 x_{4} & \leq 50, \\
3 x_{1}+2 x_{2}-2 x_{3}-x_{4} & \leq 20
\end{aligned}
$$

are added to those of Problem 6.a. Solve the new problem starting from the previous optimal tableau.

