MATH 482, Spring 2013 - Homework 3 Due Wednesday, 02/27.

Solve 3 of the first 4 problems below, and also solve problem 5. Students registered for 4 credits must solve all problems.

1. [5pts] Solve (in mixed strategies) for both players the game with the payoff matrix

$$
\left(\begin{array}{ccccc}
-2 & 3 & 0 & -6 & 3 \\
0 & -4 & 9 & 2 & 1 \\
6 & -2 & 7 & 4 & 5 \\
7 & -3 & 8 & 3 & 2
\end{array}\right) .
$$

2. [5pts] Use the revised simplex method to find an optimal solution to the problem

$$
\text { Minimize } z=-7 x_{1}-11 x_{2}-4 x_{3}-x_{4}
$$

subject to

$$
\left\{\begin{aligned}
2 x_{1}+3 x_{2}+x_{3}+2 x_{4} & \leq 5, \\
3 x_{1}+5 x_{2}+2 x_{3}+x_{4} & \leq 8, \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}\right.
$$

3. [5pts] Let G be the network with the flow drawn below on the left (the numbers correspond to flow values). Write the flow as a linear combination of flows along cycles and paths from s to t.

4. [5pts] Solve the flow problem above and on the right using revised simplex (the numbers correspond to capacity values).
5. [15pts] Use the Sage linear programming tools, GLPK, or another linear programming software to solve the linear program given on the course webpage.
