MATH 482, Spring 2013 - Homework 4 Due Wednesday, 03/27.

Solve 4 of the first 5 problems below, and also solve problem 6. Students registered for 4 credits must solve all problems.
For problems 1-3, consider the following graph.

1.[5pts] (Primal-Dual Simplex) Solve the shortest st-path problem using the primal-dual simplex algorithm.
2.[5pts] (Dijkstra's Algorithm) Use Dijkstra's Algorithm to compute the distances from s to all other vertices in the graph above.
3.[5pts] (Max-Flow/Min-Cut) Solve the max-st-flow problem using the Ford-Fulkerson Algorithm. Prove optimality using duality.
4.[5pts] (Floyd-Warshall Algorithm) Use the Floyd-Warshall Algorithm to compute shortest distances among all pairs of vertices in the graph given by the following adjacency matrix. (The entry $a_{i, j}$ stores the length of the $\operatorname{arc}(i, j)$.)

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
6 & 1 & 0 & 0 & 3 \\
5 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right]
$$

5. [5pts] Consider the following linear program.

$$
\begin{array}{rr}
\max & x_{1}+x_{2} \\
\\
\text { subject to } & -\frac{8}{3} x_{1}+x_{2} \geq-\frac{8}{3} \\
& x_{1}-x_{2} \geq-\frac{1}{2} \\
& x_{1}, \\
x_{2} \geq 0
\end{array}
$$

Solve the linear problem graphically, then also solve the problem graphically when x_{1} and x_{2} are constrainted to be integers, demonstrating a gap between the real and integer solutions.
6. [10pts] (Matchings and Vertex Covers) Let G be a graph with edges spanning two sets of vertices, X and Y. A matching is a set M of edges, where $M=\left\{x_{i} y_{i}: 1 \leq i \leq k\right\}$ for some $k, x_{i} \in X$, and $y_{i} \in Y$, with $x_{i} y_{i} \in E(G)$. A vertex cover is a set $Q \subset V(G)$ such that all edges have at least one endpoint in Q. Use Max-Flow/Min-Cut to prove that the maximum size of a matching in a bipartite graph G is equal to the minimum size of a vertex cover. (Hint: Add vertices s and t to G, direct the edges, and show that the max $s t$-flow and min $s t$-cut problems are equivalent to the max matching and min vertex cover problems.)

