MATH 482, Spring 2013 - Homework 4

Solutions

For problems 1-8, consider the following graph.

1.[5pts| (Primal-Dual Simplex) Solve the shortest st-path problem using the primal-dual simplex
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2.[5pts] (Digkstra’s Algorithm) Use Dijkstra’s Algorithm to compute the distances from s to all
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3.[5pts] (Maz-Flow/Min-Cut) Solve the max-st-flow problem using the Ford-Fulkerson Algorithm.
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4.(5pts] (Floyd-Warshall Algorithm) Use the Floyd-Warshall Algorithm to compute shortest dis-
tances among all pairs of vertices in the graph given by the following adjacency matrix. (The entry
a;,; stores the length of the arc (3, j).)
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We perform the triangle updates on the five vertices in order (top-to-bottom/left-to-right). New
values are in bold.

1.’1)1 21)2 3.1)3
o0 1 2 o0 o oo 1 2 5 oo 8 1 2 5 5
00 o0 oo 4 oo 00 00 o0 4 o 00 o0 o0 4 o
6 1 8 oo 3 6 1 8 5 3 6 1 8 5 3
5 3 7 oo o 5 3 7 8 o 5 3 7 8 10
00 0 o0 3 o o0 oo 00 3 oo 00 00 o0 3 o
4. vy 5. s
81 2 5 5 81 2 5 5
9 7 11 4 14 9 7 11 4 14
6 1 8 5 3 6 1 8 5 3
5 3 7 8 10 53 7 8 10
8 6 10 3 13 8 6 10 3 13
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5.[5pts] Consider the following linear program.

max ry + x2
subject to -%zl + x2 2 —%
Ty, — Iy 2 -3
z), 2 > 0

Solve the linear problem graphically, then also solve the problem graphically when z; and z» are
constrainted to be integers, demonstrating a gap between the real and integer solutions.
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6.[10pts] (Matchings and Vertezx Covers) Let G be a graph with edges spanning two sets of vertices,
X and Y. A matching is a set M of edges, where M = {z;y; : 1 < % < k} for some k, z; € X,
and y; € Y, with z;y; € E(G). A vertez cover is a set Q@ C V(G) such that all edges have at least
one endpoint in Q. Use Max-Flow/Min-Cut to prove that the maximum size of a matching in a
bipartite graph G is equal to the minimum size of a vertex cover. (Hint: Add vertices s and ¢ to
G, direct the edges, and show that the max st-flow and min st-cut problems are equivalent to the
max matching and min vertex cover problems.)

Proof. Given a bipartite graph G with bipartition X UY, we will build a network N whose flows
correspond to matchings of G and whose minimum cuts correspond to minimum vertex covers in
G.

Let N have vertex set V(N) = {s,t}UX UY . For each z € X, let sz be an edge of capacity 1. For
each y € Y, let yt be an edge of capacity 1. For each edge zy € E(G), let zy be an edge of N with
capacity |X| + |Y|. Since the capacities are integers, the Ford-Fulkerson algorithm guarantees that
maximum flows will have integer values on the edges.

Given a feasible integer flow f in N, let My = {zy: 2 € X,y € Y, f(zy) = 1}. Sinceeachz € X
has a maximum incoming flow of 1, there is at most one edge zy € Mj. Since each y € Y has a
maximum outgoing flow of 1, there is at most one edge zy € My. Thus, M; is a matching and
observe that |My| is equal to the value of f.

Given a matching M in G, let f be a flow defined as

1. f(sz) =1 if and only if z is saturated by M,
2. f(yt) =1 if and only if y is saturated by M, and
3. f(zy) =1if and only if zy € M,

where z € X and y € Y. Observe that since M is a matching, f is a feasible flow in N and f has
value equal to |M]|.

Let [W,W] be a minimum st-cut in N. Since assigning W = {s} or W = {t} presents a cut of
capacity |X| or |Y|, a minimum st-cut [W, W] never contains an edge from X to Y, since their
capacities are strictly larger. Thus, let @ = (WNX)U(WNY). We claim that @Q is a vertex cover
of size equal to the capacity of [W, W]. Observe that no edges span W N X and W NY or else the
capacity of the cut is too large (by earlier argument). Thus, every edge zy € E(G) has at least one
endpoint in Q, so Q is a vertex cover. Also, since sz € [W,W)] for all z € Q and yt € [W, W] for all
y € @, the capacity of W is equal to the size of Q.

For any vertex cut @, let W = {s} U (X \ @)U (Y N Q). We claim that the capacity of W is equal
to the size of Q: if z € QN X, then sz € [W,W]; if y € QNY, then yt € [W, W]. Since Q is a
vertex cover, no edges from X to Y are in [W, W}, so hence the capacity of this st-cut is equal to
Q.

Since the size of a maximum matching equals the value of a maximum flow, the value of a maximum
flow equals the capacity of a minimum cut, and the capacity of a minimum cut is the size of some
vertex cover, we have the maximum matching is bounded below by the minimum size of a vertex
cover. Since a minimum vertex cover has size equal to the capacity of an st-cut, the capacity of
an st-cut is at least the value of a maximum flow, and the value of a maximum flow is the size
of a maximum mathing, we have the minimum vertex cover is bounded below by the maximum
matching. Thus, the size of a maximum matching is equal to the size of a minimum vertex cover. [J






