MATH 482, Spring 2013 - Homework 5 Due Wednesday, 04/17.

Solve either all of the first 5 problems below, or solve 3 of the first 5 problems and also problem 6 . Students registered for 4 credits must solve all problems.

1. [5pts] An (n, k, λ, μ) strongly regular graph is an undirected graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ where every vertex is incident to k edges and for every pair v_{i}, v_{j} :

- If $v_{i} v_{j}$ is an edge, then v_{i} and v_{j} have exactly λ common neighbors.
- If $v_{i} v_{j}$ is not an edge, then v_{i} and v_{j} have exactly μ common neighbors.

For arbitrary n, k, λ, μ, construct an integer program encoding the constraints of an (n, k, λ, μ) strongly regular graph. Prove that the feasible integer solutions are in bijection with the (n, k, λ, μ) strongly regular graphs on vertex set v_{1}, \ldots, v_{n}. (For this last part, we consider the graphs to be labeled and so do not worry about isomorphism.)
2. [5pts] Let

$$
A=\left[\begin{array}{rrrr}
1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

Determine if A or B is totally unimodular.
3. [5pts] Solve the following integer program using the fractional dual algorithm.

$$
\begin{aligned}
& \min x_{1}+x_{2}=z \\
& \text { subject to } \quad x_{1}+2 x_{2} \geq 2 \\
& -x_{1}+4 x_{2} \leq 3 \\
& x_{1}, \quad x_{2} \geq 0, \text { integer }
\end{aligned}
$$

4. [5pts] Solve the integer program of (3) using branch-and-bound.
5. [5pts] Draw plots in the x_{1}, x_{2} plane of the feasible regions and cuts at each stage of the fractional dual algorithm or branch-and-bound. You may only do this problem for credit if you do both (3) and (4).
6. [10pts] Solve the following integer program using fractional dual or branch-and-bound.
