MATH 482, Spring 2013 - Homework 5 Due Wednesday, 04/17.

Solve either all of the first 5 problems below, or solve 3 of the first 5 problems and also problem 6. Students registered for 4 credits must solve all problems.

1. [5pts] An (n, k, λ, μ) strongly regular graph is an undirected graph with vertex set $\{v_1, \ldots, v_n\}$ where every vertex is incident to k edges and for every pair v_i, v_j :

- If $v_i v_j$ is an edge, then v_i and v_j have exactly λ common neighbors.
- If $v_i v_j$ is not an edge, then v_i and v_j have exactly μ common neighbors.

For arbitrary n, k, λ, μ , construct an integer program encoding the constraints of an (n, k, λ, μ) strongly regular graph. Prove that the feasible integer solutions are in bijection with the (n, k, λ, μ) strongly regular graphs on vertex set v_1, \ldots, v_n . (For this last part, we consider the graphs to be *labeled* and so do not worry about isomorphism.)

2. [5pts] Let

$$A = \begin{bmatrix} 1 & -1 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}.$$

Determine if A or B is totally unimodular.

3. [5pts] Solve the following integer program using the fractional dual algorithm.

4. [5pts] Solve the integer program of (3) using branch-and-bound.

5. [5pts] Draw plots in the x_1, x_2 plane of the feasible regions and cuts at each stage of the fractional dual algorithm or branch-and-bound. You may only do this problem for credit if you do both (3) and (4).

6. [10pts] Solve the following integer program using fractional dual or branch-and-bound.