MATH 482, Spring 2013 - Homework 1 (Will be) Assigned Wednesday, 09/04. Due Friday, 09/06.

1. (*Assigned!*, 5pts) Convert the following (general form) linear program into standard and canonical form:

max	$3x_1$	_	$2x_2$			+	x_4		
subject to	x_1	+	x_2	—	x_3			\geq	1
			$2x_2$			+	x_4	=	0
					x_3	_	$3x_4$	\leq	6
	$x_1,$		x_2					\geq	0
					x_3			\leq	0
							x_4		free

2. Consider the linear programming formulation of the shortest paths problem. (*The statements below are adjusted versions of the questions asked in class.*)

a. Produce a digraph whose shortest paths linear program has a feasible point with $x_{i,j} > 1$ for some edge ij.

b. (Assigned!, 5pts) Prove that for every digraph, every optimal solution to the shortest paths linear program has $x_{i,j} \leq 1$ for all edges ij.

c. (Assigned!, 5pts) Produce a digraph whose shortest paths linear program has an optimal point where at least one variable $x_{i,j}$ has $0 < x_{i,j} < 1$. (Hint: Consider what happens when there are multiple optimal solutions to the shortest paths problem.)

d. Prove that for every digraph there exists an optimal solution to the shortest paths linear program where every variable $x_{i,j}$ has value in $\{0,1\}$. (*Hint: Use duality, and look in the example implementation report 0.*)

3. Consider the following linear program:

a. Plot the constraints and solve the problem graphically.

b. List all of the basic feasible solutions.

c. Characterize the optimal solutions in terms of optimal basic feasible solutions.

4. ((Assigned!, 5pts) Consider a standard-form linear program P

$$\min \mathbf{c}^{\top} \mathbf{x}$$
subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

Let D be the dual of P. Prove that the dual of the dual of P is equivalent to P by forming the dual D, converting D into a standard form problem D', then forming the dual of D' (call it P') and converting P' into standard form. Here is an outline:

Standard Form problem P
$$\xrightarrow{\text{take the dual}}$$
 General problem D
convert to standard form
Standard Form problem D' $\xrightarrow{\text{convert to standard form}}$ General problem P'