
MATH 482, Spring 2013 - Homework 5
Assigned Monday 11/04. Due Monday 11/11.

For this homework, solve four of the following five problems, but definitely complete problems 4 and
5. Each is worth 5 points. Problem 1 has a point breakdown for the parts, should you choose to do
that problem.
Complete AT MOST four problems. If you complete all five, then your top score will be dropped!
1. Determine which of the matrices below are (i) unimodular, (ii) totally unimodular, or (iii)
neither. Be sure to explain your answer.


1 −1 −1 0
−1 0 0 1

0 1 0 −1
0 0 1 0




1 0 1 0
0 1 0 0
0 0 1 1
1 1 0 1




0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 1
0 0 1 1 0


a. (1.5pts) b. (1.5pts) c. (2pts)

a. It is totally unimodular since every column has exactly one 1 and exactly one −1 and the rest
are zeroes.

b. It is not totally unimodular, since the 3 × 3 submatrix with rows and columns in {2, 3, 4} has
determinant 2. It is also not unimodular, since the full matrix has determinant 2.

c. It is not totally unimodular, since the 3 × 3 submatrix with rows and columns in {3, 4, 5} has
determinant 2. It is also not unimodular, since the full matrix has determinant −2.



2. An (n, k, λ, µ) strongly regular graph is an undirected graph with vertex set {v1, . . . , vn} where
every vertex is incident to k edges and for every pair vi, vj :

• If vivj is an edge, then vi and vj have exactly λ common neighbors.

• If vivj is not an edge, then vi and vj have exactly µ common neighbors.

For arbitrary n, k, λ, µ, construct an integer program encoding the constraints of an (n, k, λ, µ)
strongly regular graph. Prove that the feasible integer solutions are in bijection with the (n, k, λ, µ)
strongly regular graphs on vertex set v1, . . . , vn. (For this last part, we consider the graphs to be
labeled and so do not worry about isomorphism.)

For each pair vi, vj , let xi,j be the indicator variable that vivj is an edge in the graph G. For each
pair vi, vj and also a vertex vk, let yki,j be the indicator variable that vivk and vkvj are edges (and
thus vk is a common neighbor of vi and vj). If these variables do correspond to these notions, then
the following constraints encode a strongly regular graph with parameters (n, k, λ, µ):

∑
i 6=j

xi,j = k(for all vj)∑
k/∈{i,j}

yki,j = µ+ (λ− µ)xi,j(for all i 6= j)

The first equation above implies that every vertex vj has exactly k neighbors. Observe that the
second equation above gives that vi and vj have exactly µ common neighbors when xi,j = 0 and
exactly λ common neighbors when xi,j = 1, thus satisfying the strongly-regular constraints.
Now, to encode the property that yki,j is the indicator that xi,k = xk,j = 1, we use the following
constraints:

yki,j ≤ xi,k yki,j ≤ xk,j , yki,j ≥ xi,k + xk,j − 1.

Observe that for each of the four possible assigments to xi,k and xk,j , there is exactly one satisfying
value for yki,j and it is the correct one.

2



3. Solve the following integer linear program using branch-and-bound. Use the graphical method
to solve each linear program relaxation. Plot your branch-and-bound cuts in the x1, x2-plane.

min x1 + x2 = z
subject to x1 + 2x2 ≥ 2

−x1 + 4x2 ≤ 3
x1, x2 ≥ 0, integer

We begin by solving the linear program to find linear optimal point (1/3, 5/6).
We branch on x1 ≤ 0 and x1 ≥ 1 and find that x1 ≤ 0 is infeasible! For x1 ≥ 1 we have the linear
optimal point (1, 1/2). We then branch on x2 ≤ 0 and x2 ≥ 1. For each, we find the linear optimal
points are (2, 0) and (1, 1), respectively. Each has cost 2, so they are both integer optimal points.
See the plot below for the branching choices and the graphical plot.

3



4. (Assigned! ) Using the following set of points on the integer grid, compute a heuristic TSP using
the Nearest Neighbor heuristic, then locally improve it using 2-switches until it is locally optimal.

Also see the course web page for an animation of these processes.

4



5. (Assigned! ) Using the above set of points on the integer grid, compute a heuristic TSP using
the Farthest Insertion heuristic, then locally improve it using 2-switches until it is locally optimal.

Also see the course web page for an animation of these processes.

5


