
Shortest Paths in Directed Graphs

Chester P. Lampwick
clampwic@iastate.edu

Derrick Stolee
dstolee@iastate.edu

August 25, 2013

1 Problem

A uv-path in a digraph G is a sequence of vertices v0v1 . . . vk such that v0 = u, vk = v and for each
i ∈ {1, . . . , k}, the pair vi−1vi is a directed edge in G. For a weight function w, the weight of the
path is

∑k
i=1w(vi−1, vi). Our goal is to minimize this weight among all st-paths.

We will assume that V (G) = [n] = {0, . . . , n− 1}, s = 0, and t = n− 1. For each edge ij ∈ E(G),
we have a real variable xi,j whose value is nonnegative. These variables represent how much of an
edge we use in an st-path.
We treat the feasible solutions as a flow from s to t of value one. Thus, we have conservation
constraints at every vertex i with s < i < t:

∑
j:ji∈E(G) xj,i −

∑
j:ij∈E(G) xi,j = 0. This enforces

that no flow is gained or lost at any vertex other than s or t. We then guarantee that exactly 1
unit of flow reaches the vertex t:

∑
j:jt∈E(G) xj,t −

∑
j:tj∈E(G) xt,j = 1. If we sum up all of these

constraints, every edge xi,j where i 6= s appears exactly once as +xi,j and once as −xi,j , and hence
we are left with the constraint

∑
i:si∈E(G) xs,i −

∑
i:is∈E(G) xi,s = 1. This guarantees that exactly 1

unit of flow leaves the vertex s. Since this last constraint is dependent on the other constraints, we
omit it in our primal formulation. Finally, we aim to minimize the weight of our path by minimizing
the sum

∑
ij∈E(G)w(i, j)xi,j . This results in the following linear program:

min
∑

ij∈E(G)

w(i, j)xi,j

subject to (
∑

i:si∈E(G)

xs,i −
∑

i:is∈E(G)

xi,s = 1)

∑
j:j1∈E(G)

xj,1 −
∑

j:1j∈E(G)

x1,j = 0

∑
j:j2∈E(G)

xj,2 −
∑

j:2j∈E(G)

x2,j = 0

...
...∑

j:j(n−2)∈E(G)

xj,n−2 −
∑

j:(n−2)j∈E(G)

x2,n−2 = 0

∑
j:jt∈E(G)

xj,t −
∑

j:tj∈E(G)

xt,j = 1

xi,j ≥ 0

1

To take the dual, observe that every constraint of the primal is associated with a vertex i ∈ [n], and
hence the dual has a variable yi for every vertex i ∈ [n]. Since the primal has equality constraints,
these variables are free. (However, since the constraint associated with the vertex s is vacuous,
we can assume the variable ys = 0 and omit it from the dual problem.) Every variable in the
primal is associated with a specific edge ij ∈ E(G), and the variable xi,j appears in two constraints
(with coefficient −1 in the constraint for i and with coefficient +1 in the constraint for j). Since
the variable xi,j is nonnegative, the constraint for ij is an upper bound. Thus, for every edge
ij ∈ E(G), the dual problem has a constraint yj − yi ≤ w(i, j). Finally, since the right-hand side
of the primal has value 0 except for the constraint at t, we have our optimization function equal to
yt. Therefore, our dual problem is given as

max yt

subject to yj − yi ≤ w(i, j) for all ij ∈ E(G)

y1, . . . , yn−2, yt free

ys = 0

A combinatorial interpretation of this dual problem is that we wish to place the vertices along
the number line. We want to maximize the position of t subject to the vertex s fixed at 0. Our
constraints limit how far to the right a vertex can be to its incoming neighbors. That is, if ij is an
edge, then j can be no more than w(i, j) to the right of i. Essentially, if we imagine the edges as
ropes of given lengths and we “stretch” the graph by pulling t in the positive direction, the edges
will eventually become “tight” and prevent the vertices from extending farther.
The way we will produce the dual solution is to assign yi to be the length of a shortest path from
s to i.

Lemma 1. Let M =
∑

ij∈E(G)w(i, j). If there exists a path from s to t, then assigning

yi =

{
d(s, i) if d(s, i) <∞
M otherwise

is an optimal dual solution. If there is no path from s to t, then the dual problem is unbounded.

Proof. First, assume there is a path from s to t, so d(s, t) <∞. By weak duality, we know that d(s, t)
is an upper bound on max yt, so if this solution is feasible then it is also optimal. If d(s, i) = ∞,
then all vertices j such that ji ∈ E(G) also have d(s, j) =∞. Thus, yi−yj = M−M = 0 ≤ w(i, j).
If d(s, i) < ∞, then observe d(s, i) = min{d(s, j) + w(j, i) : ji ∈ E(G)}. Thus, yi = d(s, i) ≤
d(s, j) + w(j, i) = yj + w(j, i) for all such edges ji ∈ E(G) where d(s, j) < ∞. If ji ∈ E(G) and
d(s, j) = ∞, then yi = d(s, i) < M + w(j, i) and the constraint on the edge ji holds. Thus, this
solution is feasible.
Now, assume that there is no path from s to t. We assign yi = 0 for all vertices with d(s, i) <∞,
and then assign yj = yt for all other vertices, and let yt be arbitrarily large. If yj − yi > 0, then
yi = 0 and yj = yt. However, this implies that i is reachable from s and j is not, so the edge ij
does not exist. Thus, yj − yi ≤ 0 ≤ w(i, j) for all edges ij ∈ E(G).

2 Implementation

We implemented Dijkstra’s algorithm using the Sage environment, specifically the Sage Graph
Library [2]. We used the pseudocode in the Wikipedia article on Dijkstra’s Algorithm [1] to help

2

with our implementation. While using this as a base, we had to slightly adjust our definition of
the dual problem in order to more easily extract a dual solution, using Lemma 1.
To run our shortest path algorithm on a graph G, a weight function w, and vertices s and t, run
ShortestPath(G,w,s,t). This method returns three values: a number d, a list P , and a dictionary
D. The number d is the weight of a shortest st-path in G, with respect to w. The list P is an
ordered list of the vertices in an st-path of weight d. The dictionary D provides dual values for the
vertices of G, where D[i] stores the distance d(s, i), as given by Lemma 1.
Here is our implementation of Dijkstra’s algorithm, as the procedure ShortestPath:

def ShortestPath(G, s, t, w):

D = {};

for i in G.vertices():

D[i] = Infinity;

D[s] = 0.0;

Predecessor = {};

Predecessor[s] = None;

Q = [s];

while len(Q) > 0:

select the next vertex to use, by min label

i = Q[0];

for j in Q:

if D[j] < D[i]:

i = j;

Q.remove(i);

for j in G.neighbors_out(i):

if D[j] > float(D[i]) + float(w[(i,j)]):

D[j] = float(D[i]) + float(w[(i,j)]);

Predecessor[j] = i;

if not j in Q:

Q.append(j);

build the path

P = [];

if D[t] < Infinity:

i = t;

P.append(i);

while Predecessor[i] is not None:

i = Predecessor[i];

P.append(i);

P.reverse();

return D[t], P, D;

See the attached Sage worksheet, reach.sws, for all details.

3

3 Solutions

We now discuss our solutions to the given problem instances.

3.1 Instance I1

Instance I1 is small enough that we were able to find the smallest path by hand. We used this as
a test case to verify our algorithm.

Shortest distance: 9

Shortest path: [0, 1, 4, 6]

Dual solution:

y_{0} = 0, y_{1} = 3, y_{2} = 5, y_{3} = 7, y_{4} = 8, y_{5} = 8, y_{6} = 9

3.2 Instance I2

This instance does NOT have an st-path and the dual is unbounded. In our dual “solution” we
use 100 as a placeholder for “arbitrarily large.”

Shortest distance: +Infinity

Shortest path: None!

Dual solution: (0, 7, 5, 7, 9, 3, 100, 8, 12, 4, 6, 15, 7, 6, 9, 100, 100, 11, 100, 100)

3.3 Instance I3

Shortest distance: 34.36

Shortest path: [0, 8, 3, 7, 16, 36, 33, 50, 68, 74, 86, 81, 99]

Dual Solution: (0.00, 22.71, 17.13, 0.92, 2.99, 10.14, 20.53, 6.12,

0.19, 9.01, 10.19, 13.15, 11.96, 8.31, 4.87, 14.84, 13.63, 13.94, 27.64,

17.80, 21.89, 6.99, 13.45, 10.69, 11.24, 16.36, 18.47, 20.26, 18.23,

15.29, 18.19, 20.38, 21.73, 17.19, 15.03, 16.50, 16.52, 23.05, 17.43,

19.62, 13.98, 11.91, 23.80, 13.77, 19.43, 16.65, 23.28, 18.70, 20.94,

25.87, 17.47, 24.66, 23.19, 30.95, 19.08, 26.04, 22.95, 25.19, 24.38,

22.89, 22.49, 19.32, 23.69, 25.36, 33.10, 23.61, 29.80, 24.63, 21.39,

31.90, 22.71, 31.45, 29.26, 30.20, 24.70, 36.62, 33.96, 31.98, 35.90,

31.13, 31.64, 27.60, 29.26, 32.29, 27.82, 29.16, 27.34, 32.49, 31.18,

34.57, 27.13, 32.89, 33.36, 36.92, 29.98, 38.83, 39.69, 30.03, 31.56,

34.36)

3.4 Instance I4

Shortest distance: 131.00

Shortest path: [0, 455, 348, 799, 1201, 742, 1089, 1536, 1970, 1901, 1999]

References

[1] Dijkstra’s Algorithm, Wikipedia, http://en.wikipedia.org/wiki/Dijkstra’s_algorithm

[2] The Sage Graph Library, http://www.sagemath.org/doc/constructions/graph_theory.html

4

http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://www.sagemath.org/doc/constructions/graph_theory.html

	Problem
	Implementation
	Solutions
	Instance I1
	Instance I2
	Instance I3
	Instance I4

