
COM S 229 Project 2 Spring 2014

Assigned Friday, March 14th.

Part A. Due Friday, April 11th, 11:59pm.

Part B. Due Wednesday, April, 30th, 11:59pm.

1 Project Summary

Super Stolee Bros is a completely original video game1. The goal is for the heroe(s) to eat all of
the “eatable” items in the map, but to not be eaten by any of the enemies! Right now, the game is
built for the user to control the heroe(s) by the keyboard, but your job is to create AI2 to replace
the heroes, enemies, and even the powerups!

Each instance of the game takes place on a 2D map that is placed on a grid. Certain locations
are marked as walls, and you cannot walk through walls. Otherwise, you can typically walk left,
right, up, down, or even stay put, but in certain places there are “teleporters” that allow a jump to
another place in the map. There are also “treadmills” that force movement in one direction. The
map is stored in a data structure called a GraphMap that stores lists of the possible moves from
each location. Each map is loaded to the game from a text file.

Here are some basic rules:

• When a hero overlaps an eatable item, that eatable item is removed.

• When a hero overlaps with an enemy (that is not eatable), then the hero is removed.

• The heroes win if all eatable items are removed.

• The enemies win if all heroes are removed, or if time runs out.

Your goal is to create actors that perform certain actions:

• simplehero : This hero will eat all eatables, given sufficient time, no enemies, and no “fast”
powerups. (This is the only strategy required to be done by Part A.)

• smarthero : This hero will eat all eatables, given sufficient time, “slow” enemies, and no
“fast” powerups.

• smartenemy : This enemy will have a coordinated strategy that will guarantee the enemies
win (by eating the hero, or by making time run out).

• smartpowerup : This powerup will try to make the enemies win by avoiding the hero and
“hiding” near the enemies.

1It should really be called PAC++MAN, but I don’t want to get sued.
2Not really “Artificial Intelligence,” but Automated Interaction!



Note: This project involves working with compiled binaries created by the instructor. You will
be given C++ header files and compiled object files and this will allow you to interact with these
objects without modifying the code yourself. As this code may contain bugs that you will discover
during your project, the binaries and header files may be subject to modification at any time.
Typically, this will be a small bug fix, but it may also be due to adding features, changing an
interface, and/or changing the rules (slightly).

Whenever an update is made to the binaries, we will send out an email warning you of this fact.
If there is a change to the interfaces, then the sample main method will be updated to account for
this. This is unfortunately something that is unavoidable as we make concrete plans for how to
grade and test your AIs.

2 Project Goals

There are several learning objectives for this project. We want you to learn how to solve problems
by breaking them down into a sequence of small decisions in order to create a full algorithm. We
want you to predict possible failures in your algorithms. You should flex some creative muscles
in order to come up with solutions. You will learn to deal with third-party libraries and APIs by
looking through documentation and troubleshooting. In addition, of course, we want to make sure
you learn to use C++.

In addition, you will demonstrate proficiency in the following C++ programming language features:
classes, inheritance, polymorphism, pass-by-reference, source code organization, compilation, make-
files.

You may also find the following concepts helpful: the Standard Template Library, templates,
debuggers (such as gdb), memory error detectors (such as valgrind),

3 Tips on getting the project completed in time

• Start EARLY! Ask for help early!

• Set aside several times a week every week to make progress on the project.

• Focus on a part of the project and get that done.

• Write pseudo code and then write code.

• Test and make sure each small method is working.

• Create and share test files.

• DO REMEMBER THAT LOTS OF UNEXPECTED THINGS HAPPEN AND CODING
USUALLY TAKES MUCH MORE TIME THAN YOU EXPECT. SO START EARLY.

2



4 Grading

The following distribution of points will be used for this part of the project.

Category Points

simplehero 150

Makefile 20

README 30

Total (Part A): 200

smarthero 75

smartenemy 75

smartpowerup 50

Makefile 20

README 30

Total (Part B): 300

The Instructor and the TAs reserve the right to not grade your project at all if it fails to compile
or link. Test early, and test often on pyrite.

5 A note on working together

This assignment is intended as an individual project. However, some amount of discussion with
other students is expected and encouraged. The discussion below should help resolve the grey area
of how much collaboration is too much.

Not allowed

Basically, any activity where a student is able to bypass intended work for the project, is not
allowed. For example, the following are definitely not allowed.

• Working in a group (i.e., treating this as a group project).

• Posting or sharing code. DO NOT POST CODE.

• Discussing solutions at a level of detail where someone is likely to duplicate your code.

• Using a snippet of code found on the Internet, that implements part of the assignment.
Generic code may be OK, but (for example) code that processes an bitmap file is definitely
not OK. If you have any doubt, check with the instructor first.

As a general rule, if you cannot honestly say that the code is yours (including the ideas behind it),
then you should not turn it in.

Allowed

3



• Sharing test maps (please post them on Piazza).

• Discussions to clarify assignment requirements, map features, etc.; again, please post these
on Piazza.

• Highlevel problem solving (but be careful – this is a slippery slope).

• Contact the TAs or the instructor for help directly. However, our goal is to teach you to fish,
so we will mostly be discussing STEPS to solving whatever problem you are facing.

If you are not sure whether doing something counts as academic dishonesty, then (1) DON’T DO
IT and (2) ask a TA or the instructor.

6 Detailed Project Specification

Generally, there are three main classes to this game.

• GameManager — Controls all action during the game, and reports if there are any special
events in the game.

• GraphMap — Stores the current state of the game, including all positions of the actors.

• Actor — Extensions of Actor contain the strategies of the different players of the game,
including heroes, enemies, powerups, and eatables.

Your main task is to extend the Actor class to create the four strategies simplehero, smarthero,
smartenemy, and smartpowerup. For Part A, only simplehero must be implemented, but all
four must be implemented in the version submitted for Part B. These should all be implemented
as distinct extensions of the Actor class and then passed to the GameManager. Command-line
arguments will specify which actors are to be used in each run of the game.

• Implement the getNetId method, which will return a string containing your NetID.

• Implement the getActorID method, which will return a string containing the id of the actor
(one of simplehero, smarthero, smartenemy, or smartpowerup).

• Implement the duplicate method, which will create a new instance of your class. (This will
also allow you to connect your instances in order to collectively form a strategy.)

• Implement the selectNeighbor method, which is how the actor selects the next move, given
the current state of the game map.

These methods are all used for different reasons. You will pass all of your actors to the GameManager
in an array, and it will use duplicate to create extra instances whenever the map says to place an
actor of that type. The command-line arguments will be used to select which actor ID is tied to
each actor type. (The GameManager takes the arguments as part of its constructor, so you do not

4



need to parse the arguments.) During the method GameManager::play(), it will manage the map
and ask each actor to select a move using selectNeighbor.

Important: The map is stored in a data structure called GraphMap. You can interact with this
object during selectNeighbor. Each (x, y) position is given a vertex id, which is a number from 0
to numVertices()−1. You will discover which vertices have edges to other vertices by using pass-
by-reference parameters with the (x, y) coordinates. The structure of the map will not change (the
possible moves at each position) but the positions of the actors may change. See GraphMap.hpp for
more on this interface.

The GraphMap will also store a list of the actors in the game, but you will only discover their type
and position. Use that information to pursue eatables and avoid enemies (or pursue heroes or
enemies, depending on the strategy!)

6.1 Command-Line Arguments

The executable should always be called ssbros. The program is run as

./ssbros [map] [arguments]

Thus, the first command is to a text file containing the map for the level. There are several examples
in the supplied tarball in the ”maps” directory. Other arguments are as follows:

• --moves # – How many turns to allow before quitting.

• --hero [id] – Use the actor with the given id for the heroes.

• --enemy [id] – Use the actor with the given id for the enemies.

• --eatable [id] – Use the actor with the given id for the eatables.

• --powerup [id] – Use the actor with the given id for the powerups.

• --delay-[type] # – Let actors of the given type only make moves every # turns.

• --delay # – Make every move last # miliseconds.

• --render-off – Do not render the map, or make timed delays. Useful if you want to use
printf for debugging.

6.2 Hints on how to get started

On Monday March 24th, we will have a lecture about graphs, directed graphs, and path-finding
algorithms. DON’T MISS IT! In this lecture, we will learn an algorithm, called breadth-first search
which can be used to find paths in a directed graph. Using this, you should create a method that
will determine the distance between any two vertices, and use that as a subroutine for your more
advanced algorithm. There are some excellent Wikipedia articles at the end of this document, but
also you can find many many resources about these algorithms!

5



6.3 README

As part of your source-code deliverable, you will write a text file called README that contains a
description of your project design. The README file should contain the following elements:

1. Your Name and NetID

2. A high-level description of your strategy for each actor.

3. A description of any extra details assumed due to ambiguous requirements in the project
specification.

4. A file listing of the source code files, specifically mentioning the purpose of each code file.

6.4 Compilation and Makefile Requirements

All software must compile and run on pyrite.cs.iastate.edu without error. Simply typing
make should build all of your executables. Also, make clean should remove the executables and
any object files. You may include other targets for your convenience as you choose (e.g., “make
tarball”)

Your source code should be delivered as a gzipped tarball with the file name netid.tar.gzip

(where netid is replaced by your NetID). Inside the tarball should be source code only, no compiled
binaries. The grader will type the following commands to compile the software:

tar xvf netid.tar.gzip

make clean

make

cat README

Thus, your tarball should contain the Makefile in the root directory, and compile all binaries to
that same directory. In addition, your makefile should use the -Wall and -g flags when compiling
via g++. We will use valgrind to make sure that no memory errors occur, and that all allocated
memory is deallocated by the termination of the program. (If there is a memory leak or bug in the
compiled binaries provided, then let us know and we will fix them!)

If all of your source code is given in .cpp and .hpp files in one directory, you can compress your
tarball using the command

tar czf netid.tar.gz *.cpp *.hpp Makefile README

SPECIAL FOR PROJECT 2: You are not to change the header files given to you in the project
specification. In fact, we will overwrite these files and hence you may actually not compile if you
change your header files.

6



6.5 Submitting your work

You should turn in a gzipped tarball containing your source code, makefile, and a README file
that documents your work. The tarball should be uploaded in Blackboard.

Your executables will be tested on pyrite.cs.iastate.edu. You should test early, and test often
on pyrite. We will use some scripts to check your code; this means you should not change the name
of the executables or the order of the command-line arguments.

Since all input in this project is given in the form of command-line arguments and by file in-
put/output, your binaries should not output anything to the shell unless there is an error condition.
Likewise, they should not take any input from standard in.

7 More Resources

http://en.wikipedia.org/wiki/Directed_graph

http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Strongly_connected_component

http://en.wikipedia.org/wiki/Actor_model

http://en.wikipedia.org/wiki/Automated_planning_and_scheduling

7

http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Strongly_connected_component
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Automated_planning_and_scheduling

