Tests for convergence/divergence of series: \S 10.2-10.6

Name	Form	Converges if and only if	Total Sum
Geometric	$\sum_{n=1}^{\infty} ar^{n-1}$	r < 1	$\frac{a}{1-r}$
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	_

n-th Term Test: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_n a_n$ diverges.

Alternating Series Test:If $b_{n+1} \leq b_n$ and $\lim_{n \to \infty} b_n = 0$, then $\sum_n (-1)^n b_n$ converges.(Absolute) Ratio Test:Let $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$, then• If $\rho < 1$, then $\sum_n a_n$ converges.• If $\rho > 1$, then $\sum_n a_n$ diverges.• If $\rho = 1$, then the test is inconclusive.

NOTE: Ratio Test is good if a_n contains a factorial or an exponential.

Limit Comparison Test (LCT): Given positive series $\sum_n a_n$ and $\sum_n b_n$, let $L = \lim_{n \to \infty} a_n/b_n$. • If $0 < L < \infty$, then $\sum_n a_n$ and $\sum_n b_n$ converge or diverge together. • If L = 0 and $\sum_n b_n$ converges, then $\sum_n a_n$ converges. • If $L = \infty$ and $\sum_n b_n$ diverges, then $\sum_n a_n$ diverges.

NOTE: LCT is good for rational functions.

Integral Test: Let $a_n = f(n)$ where f(n) is (1) positive, (2) decreasing and (3) continuous on $[N, \infty)$. Then $\sum_{n \ge N} a_n$ and $\int_N^\infty f(x) dx$ converge or diverge together. **Telescoping/Collapsing Series:** Use partial fractions to allow terms in the series to cancel and get a closed form for S_n . Check directly if $\lim_{n\to\infty} S_n$ exists.

NOTE: Sums can be computed only for geometric series, telescoping series and those derived from Taylor series (§9.8).

Ordinary Comp. Test (OCT): Let $0 \le a_n \le b_n$, for $n \ge N$.

- If $\sum_{n} b_n$ converges, then $\sum_{n} a_n$ converges.
- If $\sum_{n} a_n$ diverges, then $\sum_{n} a_n$ diverges.

NOTE: LCT beats OCT unless you have a sin, cos or arctan function.

Estimates

Integral Test: Let $a_n = f(n)$ where f(n) is (1) positive, (2) decreasing and (3) continuous on $[N, \infty)$. $\int_{n+1}^{\infty} f(x) \, dx \leq S - S_n = \sum_{k=n+1}^{\infty} a_k \leq \int_n^{\infty} f(x) \, dx$

Alternating Series Test: If $b_{n+1} \le b_n$ and $\lim_{n\to\infty} b_n = 0$, then $|S - S_n| = \left|\sum_{k=n+1}^{\infty} (-1)^n b_n\right| \le b_{n+1}$.

Sequences

Squeeze Theorem: If
$$a_n \leq b_n \leq c_n$$
 and $L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$, then $L = \lim_{n \to \infty} b_n$.

Monotonic Sequence: If $\{a_n\}$ is nonincreasing and bounded below, it converges. If $\{c_n\}$ is nondecreasing and bounded above, it converges.