COM S 330 — Homework 05 — Solutions

Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

Problem 1. [5pts] Consider our definitions of Z, @, R, and C. Recall that A C B means “A is a subset of
B” and A € B means “A is not a subset of B.”

Prove that
(a) ZCQ,
Proof. Let ¢ € Z be an arbitrary integer. Then { is a rational number in Q, and ¢ = % O
(b)QZ 2z,
Proof. % is a rational number in QQ, but it is not an integer, so % ¢ 7. O
() RZQ,
Proof. \/2 is a real number, but as we know from class it is irrational. O
(d) RCC,
Proof. Let x be a real number. Then x + 07 is a complex number in C, and = = = + 0. O

and (e) CZ R.

Proof. i is a complex number in C, but ¢ = v/—1 and for every real number x € R, 22 > 0, so since i? < 0, i
is not a real number. O

(We would also accept that we know 4 is imaginary and not a real number, but giving a reason is always
nice.)
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Problem 2. [5pts] Prove that if A C B, then P(A4) C P(B).

Proof. Let S € P(A) be an arbitrary element of P(A). By the definition of P(A), S is a subset of A.
Therefore, for every element x € S, the element x is also in A. Since A C B, the element z € A is also an
element © € B. Therefore, S is also a subset of B. Hence, S is an element of P(B) and P(A) C P(B). O
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Problem 3. [5pts] Let A and B be sets. Prove that |AU B| = |A|+|B| — |AN B], using the following steps:

1. Prove that if E and F' are disjoint sets (i.e. ENF = &) then |[EU F| = |E| + |F|.

Proof. Since EN F = @, each element of E U F' is in exactly one of F or F' (not both). There are |E)|
such elements that are in E and |F| such elements that are in F. Thus, there are |E| + |F| elements
total in EU F. O

2. Prove that |[AU B| = |A| + |B\ Al.

Proof. Note that AN (B\ A) = @. Therefore, by the previous part (with E = A and F = B\ A),
|[AU(B\ A)| =|A|+ |B\ A|. It remains to show that AU (B\ A) = AU B, which holds since

AU(B\A)=AUBNA) =(AUA)N(AUB)=UN(AUB)=AUB.

3. Prove that |[B\ A| = |B|— |AN B|.
Proof. Note that |B\ A| = |B|—|ANB]|if and only if |B| = |BNA|+|B\ A|. Since (BNA)N(B\A4) = 2,
we can apply the first part with £ = BNA and F' = B\ A to find that |(BNA)U(B\A)| = |BNA|+|B\A|.
It remains to show that B = (BN A)U (B \ A), but this holds since any element x € B is either in A
or not in A, so it is in BN A or B\ A. (You can also use Set Identities, if you want.) O
4. Conclude that |[AU B| = |A| +|B| — |AN B].

Proof. From previous parts, we see that

|AUB| =|A|+|B\ Al = |A| +|B| - |AN B].
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Problem 4. [5pts] Let U = {1,2,3,4,5,6,7}, A ={1,3,5,7}, B={4,5,6,7}. Determine the following sets:

o A=1{2,46}

ANB={5,7}

AUB=1{1,3,4,5,6,7}
A\ B ={1,3}
AAB ={1,3,6}
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Problem 5. [5pts] Let A and B be sets. Prove that P(4) NP(B) = P(AN B).

Proof. We prove both P(A)NP(B) C P(ANB) and P(AN B) C P(A) N'P(B) to show equality.

(P(AYNP(B) CP(ANB)) Let S € P(A)NP(B). Thus S € P(A) and S € P(B). By definition of the
power set, S is a subset of A and S is a subset of B. Therefore, every element of S is an element of A and
an element of B. Hence S is a subset of AN B and by definition of the power set, S € P(AN B).

(P(ANB) CP(A)NP(B)) Let S € P(AN B). By definition of the power set, S is a subset of AN B. So
every element of S is in both A and B. Then S is a subset of A and a subset of B. By definition of the
power set, S is in P(A) and in P(B). Therefore, S € P(A) N P(B). O
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Problem 6. [10pts] Let A, B, and C be subsets of a universe . Use definitions of set operations and set
identities to prove the following equality of sets:

(BNAUBNC)\(ANBNC)=(BN(AAQC))

(BNAUBNC))H)\(ANBNCO)
=(BN(AUC)\(ANBNC) Distributive law
=(BN(AUC))N(ANBNCQC) Definition of set difference
=(BNn(AUC)N(AuBUC) DeMorgan’s law
=BN((AuC)N(AuBUQ0)) Associative law
=BN((AN(AUBUCQC))U(CN(AUuBUCQ))) Distributive law
=BN((ANA)UANB)UANC)U(CNAUCNB)U(CNC)) Distributive law
=BN@UANB)UANC)U(CNA)YU(CNB)U®Y) Complementation law
=Bn(ANnB)Uu(AnC)u(CNnA)uU(CNB)) Identity law
=BN(ANB)U(A\C)U(C\ A)U(CNB)) Definition of set difference
=BN((AAC)U(ANB)U(CNB)) Definition of symm. diff. and comm. law
= (BN (AAC)U(BN(ANB))U (BN (CnNB))) Distributive law
= (BN (AAC)U(BNBNA)U(BNBNA) Commutative and Associative laws
=(BN(AAC)U(BNA)U(LNA) Complementation laws
=(BN(AAC)Uo U Domination law
= BN(AAC) Identity law
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Problem 7. [5pts] Let A = {a,b,c}, B = {1,2,3,4}, and C = {m, $,i}. Define functions f : A — B and
g:B—Cas

9 T x=1
r=a
¢ x=2
f@) =43 e=b g@)=17 "7
i r=3
4 x=c
T x=4

Consider each of the functions f, g, g o f and determine if they are injective, surjective, or both.

e f : injective, not surjective.

Since f(a) =2, f(b) =3, and f(c) = 4, every element of the domain is mapped to a distinct element
of the codomain, so f is injective.

Since no element is mapped to 1 € B, f is not surjective.

e ¢ : surjective, not injective.
Since g(1) = g(4) = =, g is not injective.
Since ¢g(2) = ¢, g(3) = ¢, and g(4) = 7, g is surjective.

e go f : injective and surjective.

Since (g o f)(a) = g(2) = ¢, (g0 f)(b) = g(3) =4, and (g o f)(c) = g(4) = 7, every element of the
domain is mapped to a distinct element of the codomain, and every element of the codomain is the
image of an element of the domain, g o f is both injective and surjective.
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Problem 8. [10pts] Consider the following function f : N — Z:

1. [1pt] Write out the elements f(0), f(1), f(2), f(3), f(4), f(5).

From this part, you should notice that the output differs depending on if the input is even or odd.

2. [4pts] Prove that f is injective.

Proof. First, I claim that f(n) < 0 when n is odd and f(n) > 0 when n is even. If n = 2k for some
integer k£ > 0, then f(2k) = (—1)?*(2k/2+1/4)—1/4 = (k+1/4)—1/4 =k > 0. If n = 2k +1 for some
integer k > 0, then f(2k+1) = (—1)**T1((2k+1)/2+1/4)—1/4 = —k—1/2—1/4—1/4 = —(k+1) < 0.

Now, assume n and m are natural numbers such that f(n) = f(m).

If f(n) >0, then both n and m are even. Then n = 2k and m = 2¢ for nonnegative integers k and /.
Thus,

(2k/2+1/4) —1/4 = f(2k) = f(n) = f(m) = f(20) = (2¢/2+1/4) — 1/4.
However, this implies that k = ¢ by simple algebra (1/4’s cancel, 2/2 = 1). So n = m.

If f(n) <0, then both n and m are odd. Then n = 2k 4+ 1 and m = 2¢ + 1 for nonnegative integers k
and ¢. Thus,

—(k+1) = —=((2k+1)/241/4)—-1/4 = f(2k) = f(n) = f(m) = f(20+1) = —((204+1)/2+1/4)-1/4 = —(£+1).
However, this implies that k = ¢, so n = m. Therefore f is injective. O
3. [5pts] Prove that f is surjective.

Proof. Let y be an arbitrary integer.
If y > 0, then let x = 2y. Note that f(2y) = (=1)%Y(2y/2+1/4) —1/4 =y.
Ify < 0, then let z = 2|y|—1. Note that f(2|y|—1) = (—1)2¥I=1((2]y|-1)/2+1/4)-1/4 = —|y| =y. O
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4.

[+5pts] Describe a function g : Z — Q that is surjective (and prove it is surjective).

There are many ways to do this, and almost all of them are gross. This is the cleanest version I can
think of.

We will describe an algorithm that will take as input an integer ¢ and will output a rational number,
and the output of this algorithm defines ¢(7).

Algorithm: Input an integer i.
If i = 0, then output 0/1.
If 4 < 0, then output —g(—i), so we must only consider positive integers.

If i > 0, then consider the (unsigned) binary representation of i as ¢ = Z?:o a;27 for some (k-+1)-tuple
(ak,ar—1,...,a1,a0). Since ¢ > 0, we can assume that ay = 1 (by making k = [log,]). Let ¢ be the
minimum integer such that either ¢ > k or a;_, = 0. Thus, the binary representation of ¢ starts with
q 1-digits, then either stops, or has a 0-digit followed by k — ¢ — 1 more digits. Let p = Z?;g aj2j.

Output %.

We claim that for every rational number % € Q, there exists an integer ¢ where the algorithm outputs

a rational number equal to % when given i. We will assume that ¢ > 0, since ¢ # 0 and if ¢ < 0 we
can use the rational number :—2 = g.

If p = 0, then the algorithm outputs % = g when given 0.

If p > 0, then let Z;:o a;j27 be a binary representation of the integer p, defining a (¢ 4+ 1)-tuple
(at,at—1,...,a1,a09). We can further assume that ¢ = [logyp] + 1, so a; = 0. Then, for j € {t +
1,...,t+ q}, define a; = 1. Then, let i = Zzi‘é a;27 and notice that this binary representation of i
starts with ¢ 1-digits, a zero digit, then the binary representation of p. Therefore, the algorithm will

output 23 when given the input ¢ (in fact, it will output the fraction in this form, with exactly this p

and ¢ pair.)
If p < 0, then consider the i that outputs _Tp and the algorithm given input —¢ will output %



