Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

Problem 1. [10pts] Consider the following sequence definitions. Write out the first 10 terms $(n \in \{0, ..., 9\})$ of each sequence.

- **a.** [3pts] $a_0 = 2$ and $a_n = 2a_{n-1} 1$ for $n \ge 1$.
- **b.** [3pts] $b_0 = 0$ and $b_n = b_{n-1} + \frac{1}{2^n}$ for $n \ge 1$.
- **c.** [4pts] $c_0 = 1$, $c_1 = 2$, and $c_n = 2(c_{n-1} c_{n-2})$ for $n \ge 2$.

Problem 2. [5pts] Let $\{d_n\}_{n=0}^{\infty}$ be a sequence with the recurrence relation $d_n = 2d_{n-1} - d_{n-2}$ for $n \ge 2$. (We do not specify the terms d_0, d_1 .) Use backward reasoning to motivate the closed form $d_n = nd_1 - (n-1)d_0$.

Problem 3. [10pts] Mathematical induction can be used to prove things that can be proven directly. In the two problems below, you will essentially prove the induction step of an induction proof.

a. [5pts] For $n \ge 0$, let P(n) denote the sentence "The $2 \times n$ chessboard can be tiled using dominoes." Prove " $P(n) \rightarrow P(n+1)$."

b. [5pts] For $n \ge 0$, let Q(n) denote the sentence "The $3 \times 2n$ chessboard can be tiled using dominoes." Prove " $Q(n) \rightarrow Q(n+1)$."

Problem 4. [10pts] Define a sequence $\{f_n\}_{n=0}^{\infty}$ as $f_0 = 1$ and for $n \ge 1$, $f_n = \frac{1}{1+f_{n-1}}$. Prove that for $n \ge 0$, $f_n = \frac{F_{n+1}}{F_{n+2}}$, where $\{F_n\}_{n=0}^{\infty}$ is the Fibonacci sequence.

Problem 5. [10pts] Let $\{A_n\}_{n=1}^{\infty}$ be an arbitrary sequence of non-empty sets. Recall the *n*-fold Cartesian product $\prod_{i=1}^{n} A_i$ is the set of *n*-tuples (a_1, \ldots, a_n) where each a_i is an element in A_i . The iterated product is the set sequence $\{B_n\}_{n=1}^{\infty}$ where $B_1 = A_1$, and for $n \ge 2$, $B_n = B_{n-1} \times A_n$. (Thus, $B_1 = A_1$, $B_2 = A_1 \times A_2$, $B_3 = (A_1 \times A_2) \times A_3$, etc.) Use induction to prove that for all $n \ge 2$, there is a bijection f_n from *n*-fold Cartesian product $\prod_{i=1}^{n} A_i$ to the iterated product $B_n = B_{n-1} \times A_n$. [Note: the *n*-fold Cartesian product $\prod_{i=1}^{n} A_i$ consists of *n*-tuples (a_1, \ldots, a_n) , while the iterated product B_n consists of ordered pairs (b, a_n) where $b \in B_{n-1}$ and $a_n \in A_n$.]