
COM S 330 — Homework 07 — Solutions

Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

Problem 1. [5pts] Consider the sequence {An}∞n=0 where each element of the sequence is a set An, defined
by A0 = ∅ and for n ≥ 1, An = {|Ai| : 0 ≤ i < n}. Prove that |An| = n for all n ≥ 0.

Proof. We will use strong induction.

Case n = 0: |∅| = 0.

(Strong Induction Hypothesis) Let N > 0 and suppose that for all n where 0 ≤ n < N , we have |An| = n.

Case N : AN = {|An| : 0 ≤ n < N}. Thus, by the Strong Induction Hypothesis, AN = {0, 1, 2, . . . , N − 1}.
Since AN contains N distinct elements, |AN | = N . (Alternatively, AN = AN−1 ∪ {|AN−1|}, so |AN | =
|AN−1|+ 1 = (N − 1) + 1. This does not require strong induction.)
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Problem 2. [5pts] Define a sequence {cn}∞n=0 by c0 = 1 and for all n ≥ 1, let cn =
∑n−1

i=0
ci

2n−i . Prove that
for all n ≥ 1, cn = 1

2 . [Note: There are two ways to prove this statement. One is by strong induction. The
other is to use weak induction after proving an equivalent recurrence relation. Either will be accepted.]

Proof. We use strong induction. Note that we must prove this for n ≥ 1, so our base case is n = 1.

Case n = 1: c1 = 1
2c0 = 1

2 .

(Strong Induction Hypothesis) Let N > 1 and suppose that for all n where 1 ≤ n < N we have cn = 1
2 .

Case N : By the recurrence relation, cN =
∑N−1

i=0
ci

2N−i = 1
2N

∑N−1
i=0 ci2

i = 1
2N

[
c0 +

∑N−1
i=1 ci2

i
]
. By the

strong induction hypothesis, ci = 1
2 when 1 ≤ i < N , and c0 = 1. Thus,

cN =
1

2N

[
1 +

N−1∑
i=1

2i−1

]

=
1

2N

1 +

N−2∑
j=0

2j

 (j = i-1)

=
1

2N

[
1 +

2N−1 − 1

2− 1

]
=

1

2N
[
2N−1

]
=

2N−1

2N
=

1

2
.

Therefore, by strong induction cn = 1
2 for all n ≥ 1.

[Alternate Solution]

Proof. Observe that for n ≥ 2, cn =
∑n−1

i=0
ci

2n−i = 1
2n

∑n−1
i=0 ci2

i. Since cn−1 = 1
2n−1

∑n−2
i=0 ci2

i by this
formula, we have

cn =
1

2n

n−1∑
i=0

ci2
i =

1

2n
(2n−1cn−1 +

n−2∑
i=0

ci2
i) =

1

2n
(2n−1cn−1 + 2n−1cn−1) = cn−1.

We now use this simplified recurrence and induction.

Case n = 1: c1 = 1
2 .

(Induction Hypothesis) Suppose cn = 1
2 .

Case n + 1: By the recurrence above, cn+1 = cn = 1
2 .
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Problem 3. [10pts] The merge sort algorithm sorts a list of n numbers x1, . . . , xn. The algorithm works by
first testing if n = 1, and if so does nothing. Otherwise, the algorithm recursively calls itself on the first bn/2c
entries, and then calls itself on the last dn/2e entries, then “shuffles” them together by iterating through the
two parts, selecting the minimum elements from each part until creating a sorted list of n entries. If tn is
the time it takes to run the merge sort algorithm on a list of n numbers, then t1 = 1 (only need to test one
operation), and (roughly)

tn = Ctdn/2e + n

Using this recurrence relation and strong induction, prove that tn ≤ Cn log2(n + 1) for all n ≥ 1.

(With using the ceiling function instead of the floor function and C = 2 this is false!)

Proof. We use strong induction on n to prove that tn ≤ 2n log2(n + 1). We start with some base cases (to
explore the value of C that is needed!).

Case n = 1: t1 = 1 ≤ C · 1 · 1 = Cn log2(n + 1). (C ≥ 1)
Case n = 2: t2 = 2 · 1 + 2 = 4 ≤ C · 2 · log2 3 = Cn log2(n + 1). (C ≥ 2)
Case n = 3: t3 = 2t2 + 3 = 11 ≤ C · 3 · 2 = 6C = Cn log2(n + 1). (C ≥ 2)
Case n = 4: t4 = 2t2 + 4 = 12 ≤ C · 3 · log2 5 = Cn log2(n + 1) ≈ 6.9C. (C ≥ 2)
Case n = 5: t5 = 2t3 + 5 = 27 ≤ C · 5 · log2 6 = Cn log2(n + 1) ≈ 12.95C. (C ≥ 3) [THIS is where the result
is false for C = 2.]
Case n = 6: t6 = 2t3 + 6 = 28 ≤ C · 6 · log2 7 = Cn log2(n + 1) ≈ 16.85C. (C ≥ 2)

(Strong Induction Hypothesis) Let N > 6 and suppose that for all n where 1 ≤ n < N we have that
tn ≤ 2n log2(n + 1).

Case N : Consider tN . Let n = dN/2e < N and note that 2n ≤ N + 1 and 2(n + 1) ≤ N + 3. By the strong
induction hypothesis, tn ≤ Cn log2(n + 1). By the recurrence relation, tN = 2tn + N , and so

tN ≤ 2(Cn log2(n+ 1)) +N

≤ C(N + 1) log2(n+ 1) +N Since 2n ≤ N + 1

≤ CN log2 (n+ 1) +
C

2
N Since log2(n+ 1) <

1

2
N and C ≥ 3

≤ CN log2

(
N + 3

2

)
+

C

2
N Since 2(n+ 1) ≤ N + 3

= CN (log2(N + 3)− log2 2) +
C

2
N

= CN log2(N + 3)− CN +
C

2
N

≤ CN log2(N + 3)−
C

2
N

= CN

(
log2(N + 1) + log2

(
1 +

2

N + 1

))
−

C

2
N by Log Identity

= CN log2(N + 1) + C
1

3
−

C

2
N Since log2(1 +

2

N + 1
) <

1

3
when N ≥ 7.

= CN log2(N + 1)−
C

6
N

≤ CN log2(N + 1).

Notice that the steps above work when C ≥ 3, so therefore tn ≤ 3n log2(n + 1) for all n ≥ 1.

The proof above used logarithmic identities. See http://en.wikipedia.org/wiki/List_of_logarithmic_

identities
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Problem 4. [10pts] Let S = (Q, T, 0) be a state machine where the states are rational numbers (Q) and
the transitions are of the form x → x + 1, x → 3x, and x → x

2 , and the initial state is 0. Prove that no
matter what transitions are used, the state 1

3 will never be reached. [For 2 extra points: Prove that for any
ε > 0, there is a sequence of transitions such that a state x is reachable where |x− 1

3 | < ε.]

Proof. We will prove that starting at the initial state x = 0 = 0
1 , the property that if p

q is a visited rational
number with p and q having no common factors, then q is a power of 2.

Initial State: x = 0 = 0
1 . 1 = 20.

Now suppose that p
q is a state where q = 2k for some k ≥ 0. We will show that any state reachable from p

q
has the invariant property.

Consider p
q + 1, which equals p+q

q . Since p and q have no common factors, p + q and q have no common

factors (if f was a common factor, then (p + q) = tf for some integer t and q = rf for some integer r,
but then p = tf − rf = (t − r)f and hence f would be a common factor between p and q.) Therefore, the
representation of p+q

q with no common factors has the denominator a power of 2.

Consider 3p
q , which equals 3p

q . Since p and q have no common factors, and q is a power of 2, 3p and q have

no common factors. Therefore, the representation of 3p
q has the denominator a power of 2.

Consider p
2q . Since q is a power of 2, q = 2k for some nonnegative integer k. If k ≥ 1, then since p and

q have no common factors, p is an odd integer. Therefore, p
2q = p

2k+1 is the representation of this rational

number with no common factors and the denominator is a power of 2. If k = 0, then p
2q = p

2 . If p is odd,
then p and 2 have no common factors and the denominator is a power of 2. If p is even, then p = 2t for some
integer t and the representation p

2 = t
1 is the representation with no common factors, and the denominator

is a power of 2.

Since the initial state satisfies the invariant property, all reachable states have the invariant property. How-
ever, the fraction 1

3 does not satisfy the invariant property, so it is not a reachable state.

[Bonus]

Proof. Fix ε > 0. Let n be an integer large enough that 1
2n < ε. Then, let m = b2n+1/3c.

Starting at the x = 0 state, use the x → x + 1 transition m times to reach the state m
1 . Then, use the

transition x → x
2 n + 1 times to reach the state m

2n+1 . Since m = b2n+1/3c, the difference m
2n+1 − 1

3 has
absolute value strictly less than 1

2n , which is less than ε.
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Problem 5. [15pts] Let Σ = {0, 1} (here we say Σ is the name of a set, not the summation notation). For
k ≥ 0, the set Σk is the set of k-tuples where every entry comes from Σ. The set Σ∗ is equal to ∪∞k=0Σk, the
set of all finite binary strings (note that for every finite binary string x of length k, x ∈ Σk ⊂ Σ∗). We will
denote a string x = (x1, x2, . . . , xk) as x1x2 . . . xk. Define a state machine (Σ∗, T, 0) where the initial state
is the string 0, and the transitions are of the form

x1x2 . . . xk−11→ x1x2 . . . xk−110 (1)

x1x2 . . . xk−10→ x1x2 . . . xk−100 (2)

x1x2 . . . xk−10→ x1x2 . . . xk−101 (3)

x1x2 . . . xk−1xk → xkxk−1 . . . x2x1x1x2 . . . xk−1xk. (4)

Note that there are four types of transitions: (1) Take a string ending in 1 and add a 0, (2) take a string
ending in 0 and add a 0, (3) take a string ending in 0 and add a 1, (4) take a string and add its reversal to
the beginning (turning it into a palindrome).

a. Prove that the string 10011001 is reachable from the initial string 0.

Proof. Starting with the initial state 0, we use the following transition types:

0
(3)→ 01

(4)→ 1001
(4)→ 10011001.

b. Prove that the string 0110110 is not reachable from the initial string 0.

Proof. Note that every transition increases the length of a string by at least one, so there are a finite number
of cases to check, as we can ask: “What strings of length at most 7 are reachable (in at most 6 steps)?”
Notice that if x is a state that is visited after the initial state, then x appears as a substring in all of the
remaining states.

In one step, we could transition 0→ 00, 0→ 01, or 0→ 00 (so 00 appears twice here). However, the string
00 does not appear in the goal string 0110110, so we will not consider that state. Thus, the first step to take
must have been 0→ 01.

In the second step, we could transition 01→ 010 or 01→ 1001. However, neither string 010 or 1001 appears
as a substring of 0110110, so this state is not reachable.

c. Prove that a reachable string can never contain three consecutive 1’s.

Proof. We will prove the following invariant property: If the string 11 appears in a reachable state, then it
appears within a substring 0110. (Observe that this invariant property will imply that 111 is not a substring,
as it contains a substring 11 that is not within a substring 0110.)

Initial State: the string 0 does not contain a string 11, so the property holds vacuously.

Suppose that x1 . . . xk is a state where every 11 substring is contained in a 0110 substring. Consider the
transitions from this state.

If we apply a type 1 transition, then xk = 1 and we add xk+1 = 0 to the end of the string. Thus, we did not
create a new 11 substring, so all 11 substrings in x1 . . . xkxk+1 exist within the string x1 . . . xk and hence
the 11 substrings are contained in 0110 substrings.

5



COM S 330 — Homework 07 — Solutions

If we apply a type 2 or 3 transition, then xk = 0 and we add xk+1 to the end of the string. Thus, we did not
create a new 11 substring, so all 11 substrings in x1 . . . xkxk+1 exist within the string x1 . . . xk and hence
the 11 substrings are contained in 0110 substrings.

If we apply a type 4 transition, then we create the string xkxk−1 . . . x2x1x1x2 . . . xk−1xk. Suppose there is a
11 substring of this string. If it is of the form xixi+1 for i ≥ 1 (i.e. in the right half of the string), then this
string appeared in the string x1 . . . xk and is still contained in a 0110 substring. If it is of the form xi+1xi

for i ≥ 1 (i.e. in the left half of the string), then this string appeared also in the string x1 . . . xk (in the form
xixi+1) and is still contained in a 0110 substring. Now suppose that a 11 substring appears as x1x1. This
string appears as a substring of x2x1x1x2. If x2 = 0, then this is a 0110 substring as we want. Thus, if
x2 = 1, then x1x2 is a 11 substring of x1 . . . xk that is not in a substring of the form 0110, contradicting the
property on the string x1 . . . xk.

Thus, our property is an invariant property and hence all reachable strings have this property. Any string
containing 111 as a substring does not have this property.
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