
COM S 330 — Homework 08 — Solutions

Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

Problem 1. [10pts] Let M = (S, T, s0) be the state machine where S = N×N and the transitions in T are
given as (m,n)→ (m−1, n+ 1) if m ≥ 1, and (m,n)→ (m,n−1) if n ≥ 1. Define a function f : N×N→ N
where f is decreasing with respect to M and use the Monotonicity Principle to prove that if the initial state
is (m,n), then the machine will halt in at most f(m,n) transitions. (Bonus 1pt for defining f(m,n) to be
optimal, predicting exactly the maximum number of steps from (m,n) to a halting state.) [Hint: Draw the
points (m,n) in the plane and draw lines between points for possible transitions.]

Proof. Let f(m,n) = 2m + n. Consider a state (m,n). The transition (m,n) → (m,n − 1) satisfies
f(m,n) = 2m + n > 2m + n− 1 = f(m,n− 1). The transition (m,n) → (m− 1, n + 1) satisfies f(m,n) =
2m + n > 2m + n− 1 = 2(m − 1) + (n + 1) = f(m − 1, n + 1). Therefore, f(m,n) is a decreasing function
and f(m,n) ≥ 0 for all m,n ∈ N. By the Monotonicity Principle, the state machine halts in at most f(m,n)
steps.

[Bonus] Starting at a state (m,n), use m transitions of the type (m,n) → (m − 1, n + 1) to arrive at the
state (0, n + m). Then use m + n transitions of the type (m,n) → (m,n − 1) to arrive at the state (0, 0).
Therefore, (m,n) has a set of 2m + n transitions until reaching the halting state (0, 0).
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Problem 2. [10pts] Let Σ = {a+, a−, b+, b−}. Let M = (S, T, s0) be the state machine where S = Σ∗ and
the transitions available in T from a string x1 . . . xn ∈ Σ∗ are as follows:

• If there exists i ∈ {1, . . . , n−1} such that xi = a+ and xi+1 = a−, then x1 . . . xn −→ x1 . . . xi−1xi+2 . . . xn.

• If there exists i ∈ {1, . . . , n−1} such that xi = a− and xi+1 = a+, then x1 . . . xn −→ x1 . . . xi−1xi+2 . . . xn.

• If there exists i ∈ {1, . . . , n−1} such that xi = b+ and xi+1 = b−, then x1 . . . xn −→ x1 . . . xi−1xi+2 . . . xn.

• If there exists i ∈ {1, . . . , n−1} such that xi = b− and xi+1 = b+, then x1 . . . xn −→ x1 . . . xi−1xi+2 . . . xn.

a. [5pts] Describe all of the possible state sequences when starting at the string b+a+b+b−a−b+a+b−b+.

b+a+b+b−a−b+a+b−b+ can transition to b+a+a−b+a+b−b+ (collapsing b+b− in positions 3 and 4) or b+a+b+b−a−b+a+

(collapsing b−b+ in positions 8 and 9).

b+a+a−b+a+b−b+ can transition to b+b+a+b−b+ (collapsing a+a− in positions 2 and 3) or b+a+a−b+a+

(collapsing positions 6 and 7).

b+a+b+b−a−b+a+ can transition to b+a+ − a−b+a+ (collapsing b+b− in positions 3 and 4).

b+b+a+b−b+ can transition to b+b+a+ (collapsing b−b+ in positions 4 and 5).

b+a+a−b+a+ can transition to b+b+a+ (collapsing a+a− in positions 2 and 3).

b+b+a+ is a halting state.

b. [5pts] For certain states in Σ∗, there may be more than one outgoing transition. Prove that for every
string x ∈ Σ∗, there is a unique halting state reachable from x. [Hint: List the possible outgoing states
y(1), . . . ,y(k) and show that every pair y(i) and y(j) have a common outgoing state, so they have a common
halting state.]

We claim that for every state x, there is a unique halting state reachable from x.

Proof. We will use proof by strong induction, using n = |x|, the length of x.

Case n = 0: If |x| = 0, then x is the empty word. There are no transitions from x, so x is its own unique
halting state.

Case n = 1: If |x| = 1, then x has exactly one letter. There are no transitions from x, so x is its own unique
halting state.

(Strong Induction Hypothesis) Let N > 0 and suppose that for all 0 ≤ n < N , the statement holds for all
words of length n.

Case N : Let x have length N . If x has no transitions, then x is its own unique halting state and k = 0.
Now suppose that x has transitions x → y(i) for i ∈ {1, . . . , k} for some k ≥ 1. If k = 1, then x has a
unique outgoing transition, and y(1) has a unique halting state, so x has a unique halting state. Thus, we
can suppose that k ≥ 2. (Note that |y(i)| = N − 2, so the induction hypothesis holds for each y(i). Since x
transitions to each y(i), there is a value ci ∈ {1, . . . , N − 1} where the positions xcixci+1 are deleted from x
to form y(i). We can order the transitions such that when i < j, ci < cj (ci 6= cj since equality would create
the same word). Thus, y(i) = x1 . . . xci−1xci+2 . . . xn.

Note: If cj = ci + 1, then observe that xci = xci+2 and hence y(i) = y(j). This is a very subtle point
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and students will not lose points if they do not mention this point. Therefore, since y(i) 6= y(j), we have
ci + 2 ≤ cj when i < j.

For 1 ≤ i < j ≤ k, we will prove that the halting state for y(i) is the same as the halting state for y(j). If
suffices to show that y(i) and y(j) have a common outgoing transition w, and by the induction hypothesis, w
has a unique halting state z, which is the unique halting state for both y(i) and y(j). In y(j), the letters in the
ci and ci +1 positions are the same as those in the word x (as ci < cj so there were two letters removed after
the ci position), so there is a transition out of y(j) to the word w = x1 . . . xci−1xci+2 . . . xcj−1xcj+2 . . . xn.

In y(j), the letters in the cj − 2 and cj − 1 positions are the same as the cj and cj + 1 positions in the word
x (as ci < cj so there were two letters removed before the cj position), so there is a transition out of y(j)

to the word w = x1 . . . xci−1xci+2 . . . xcj−1xcj+2 . . . xn. By Strong Induction, w has a unique halting state

z, which is equal to the unique halting state of y(i) and y(j). Thus, for all i ∈ {1, . . . , k}, the halting state
from y(i) is the halting state z. Finally, this halting state z is the unique halting state reachable from x.
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Problem 3. [10pts] Let M = (Q, T, s0) be a state machine on the rational numbers with transitions
p
q →

p
q + 1

pq = p2+1
pq , when p > 0 and q > 0.

a. [5pts] Let Pd(p
q ) be the property “d ≤ p

q < d + 1.” Prove that when d is an integer with d ≥ 3, Pd is a

reversible invariant for the state machine M . [Hint: Show that Pd is a preserved invariant for all d ≥ 2. If
Pd(p

q ) is true, then p = dq + r where r is an integer and 0 ≤ r < q. To show Pd is a reversible invariant for

d ≥ 3, use the fact that it is a preserved invariant for d ≥ 2.]

Proof. Let d ≥ 2. Suppose Pd(p
q ) is true and p

q →
p2+1
pq is a transition. Since d ≤ p

q < d + 1, we have
dq ≤ p < dq + q and hence p = dq + r for an integer r with 0 ≤ r < q. Then, since p ≥ dq ≥ 2 we have
r + 1

p ≤ r + 1
2 < q and rp + 1 = p(r + 1/p) < pq and hence

p2 + 1 = p(dq + r) + 1 = dpq + rp + 1 < dpq + pq = (d + 1)pq.

Therefore,

d ≤ p

q
<

p2 + 1

pq
< d + 1,

and Pd is a preserved invariant for d ≥ 2.

Now let d ≥ 3. For the sake of contradiction, suppose that Pd is not a reversible invariant, so there exists

a fraction p
q where Pd(p

q ) is false but Pd(p2+1
pq ) is true. This means d ≤ p

q + 1
pq < d + 1. Since p

q < p
q + 1

pq ,

we know that p
q < d + 1, so since Pd(p

q ) is false it must be because p
q < d. If p

q ≥ 2, then Pe(
p
q ) is true for

some e ≥ 2, but since Pe is a preserved invariant, it must be that e = d. Therefore, p
q < 2, implying that

1 < p2+1
pq −

p
q = 1

pq ≤ 1, a contradiction.

b. [5pts] Use part (a) and the Reversibility Principle to say that if p
q is the initial state with p

q ≥ 3 and i
j is

a reachable state, then bpq c = b ij c. [You can get full points for this part if you assume (a), even if you have

not proven (a) correctly.]

Proof. Let d be the integer where Pd(p
q ) is true. Since p

q ≥ 3, d ≥ 3 and Pd is a reversible invariant. By the

reversibility principle, Pd(p
q ) is true if and only if Pd( i

j ) is true. Thus, d = bpq c = b ij c.

c. [Bonus 1pt] Find a fraction p
q such that P1(p

q ) is true but P1(p2+1
pq ) is false.

d. [Bonus 1pt] Find a fraction p
q such that P2(p

q ) is false but P2(p2+1
pq ) is true.

Let p = q = 1. Then 1 ≤ 1
1 < 2 but 11+1

1·1 = 2
1 = 2. Thus, this transition shows that P1 is not a preserved

invariant and P2 is not a reversible invariant (although P2 is a preserved invariant).
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Problem 4. [10pts] Define a set S ⊆ R recursively using the Recursive Step “If x ∈ S, then (x−1)(x+1) ∈
S.” Consider the following bases.

a. [3pts] Prove that if the basis step is “0 ∈ S” then S = {0,−1}.

Proof. By the basis step, 0 ∈ S. Using 0 in the recursive step, (0− 1)(0 + 1) = −1 and hence −1 ∈ S. Thus,
{0,−1} ⊆ S.

Using −1 in the recursive step, (−1− 1)(−1 + 1) = 0 and hence 0 ∈ S. Therefore, no other elements are in
the set.

b. [3pts] Prove that if the basis step is “1 ∈ S” then S = {1, 0,−1}.

Proof. By the basis step, 1 ∈ S. Using 1 in the recursive step, (1− 1)(1 + 1) = 0 and hence 0 ∈ S. Using 0
in the recursive step, (0− 1)(0 + 1) = −1 and hence −1 ∈ S. Thus, {1, 0,−1} ⊆ S.

Using −1 in the recursive step, (−1− 1)(−1 + 1) = 0 and hence 0 ∈ S. Therefore, no other elements are in
the set.

c. [4pts] Prove that if the basis step is “2 ∈ S” then S is an infinite set.

Proof. We use proof by contradiction. Suppose that S is finite. Then there exists a maximum element
x = maxS. Since 2 ∈ S by the basis step, x ≥ 2.

Since x ∈ S, the element (x− 1)(x + 1) = x2 − 1 is in S by the recursive step. Since x ≥ 2, x2 > x + 1, and
hence x2 − 1 > x, contradicting that x is the maximum element in S.
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Problem 5. [10pts] Define a set S ⊆ R recursively by (Basis Step) 1
1 ∈ S, and (Recursive Step) If x ∈ S,

then 2x ∈ S and x
3 ∈ S. Prove that S = { 2

i

3j : i, j ∈ N}.

Proof. (S ⊆ { 2
i

3j : i, j ∈ N}) We use structural induction.

(Basis) 1
1 = 20

30 .

(Recursive Step) Let 2i

3i be an element of S. The transition 2i

3j → 2 2i

3j implies the element 2i+1

3j is in S. The

transition 2i

3j →
2i

3j

3 implies the element 2i

3j+1 is in S.

Therefore, by structural induction every element of S is of the form 2i

3j .

({ 2
i

3j : i, j ∈ N} ⊆ S) We use induction on i + j to show that 2i

3j is in S.

Case i + j = 0: 20

30 = 1
1 which is in S by the basis step.

(Induction Hypothesis) Let n ≥ 0 and suppose that for all i, j ∈ N with i + j = n we have 2i

3j ∈ S.

Case i + j = n + 1: If i > 0, then since i− 1 ∈ N and (i− 1) + j = n we have 2i−1

3j ∈ S. By the construction

step, 2 · 2
i−1

3j = 2i

3j is in S. If i = 0, then since j = n + 1 > 0 we have j − 1 ∈ N and 1
3j−1 is in S. By the

construction step,
1

3j−1

3 = 1
3j is in S.

By induction, every element 2i

3j with i, j ∈ N is in S.

6


