
COM S 330 — Lecture Notes — Week of Jan 12–16

1 Monday, January 12

Announcements: Course Syllabus, Homework 01 Due Jan 15.

Reading: Rosen: 1.1, 1.2, 1.3. LLM: 1.1–1.2, 3.1–3.4

1.1 Rosen 1.1 — Propositional Logic

Def: A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false,
never both.

Ex: “Ames is a city in Iowa.” “Today is Monday.” “2× 3 = 6.” “2× 2 = 5.”

Non-Ex: “How are you doing?” “Go outside, for once!” “3x = 6.” “x + y = z.”

Use letters (such as x, y, z, p, q, r, s, . . . ) to denote propositional variables, which symbolize some proposition
(and whether or not it is true).

The truth value is either true (T) or false (F).

Def: The propositional calculus or propositional logic is a way to combine propositions to create other
propositions.

Def: If p is a proposition, then the negation of p, denoted ¬p or p, is the statement

“It is not the case that p.”

Def: A truth table expresses the truth value of a compound proposition given every possible combination of
truth values for its propositional variables.

p ¬p
T F

F T

p q p ∧ q

T T T

T F F

F T F

F F F

p q p ∨ q

T T T

T F T

F T T

F F F

p q p⊕ q

T T F

T F T

F T T

F F F

p q p→ q

T T T

T F F

F T T

F F T

Table: Truth tables for ¬p, p ∧ q, p ∨ q, p⊕ q, and p→ q.

Def: Let p and q be propositions. The conjunction of p and q, denoted p ∧ q and said “p and q,” is true
exactly when p and q are both true. The disjunction of p and q, denoted p ∨ q and said “p or q,” is true
exactly when at least one of p or q is true.

Note: If you say “Will you have the soup or the salad?” in English, you are typically saying you can have
exactly one of the soup or the salad. However, in the disjunction p ∨ q, it is still true if BOTH p and q are
true. This is called inclusive or. When you want to specify the statement “exactly one of p and q is true,”
then you want the exclusive or, denoted p⊕ q.

Def: Let p and q be propositions. The conditional statement p → q is the proposition “if p, then q.” This
proposition is true only when q is true whenever p is true. There are many ways to describe this relationship
(see Rosen, p. 6 for a list).

A conditional statement is sometimes called an implication.

“If your final weighted score is above 90%, then you will receive an A in this course.”

1



COM S 330 — Lecture Notes — Week of Jan 12–16

The idea of “p→ q” is that p is a condition, and only when that condition is true can you say something for
sure about q! If p is false, then the conditional statement “p→ q” is vacuously true.

“If pigs have wings, then pigs can fly.”

“If I am a hat, then I am the president.”

Note: Do not confuse the “if p then q” phrasing too much with the if/then constructions in programming
(but they are related!).

Given a conditional statement “p→ q” there are a few ways to modify it (that are worth remembering):

1. converse : “q → p” (sometimes written “p← q”).

2. contrapositive : “¬q → ¬p

3. inverse : “¬p→ ¬q

See the following truth table to see that these do not always agree with the conditional statement.

Conditional Converse Contrapositive Inverse Biconditional

p q p→ q q → p ¬q → ¬p ¬p→ ¬q p↔ q

T T T T T T T

T F F T F T F

F T T F T F F

F F T T T T T

Table: Truth table for variations on conditional statements. Observe that these conditionals each false in
exactly one situation: where p and q differ (and which of these two cases is different in some situations).

Def: Let p and q be propositions. The biconditional statement p↔ q is the proposition “p if and only if q”
and is true when p and q have the same truth value.

1.1.1 Recommended Homework

Rosen 1.1: 1–5, 8–15, 22–28.

2



COM S 330 — Lecture Notes — Week of Jan 12–16

2 Wednesday, January 14

Announcement: Homework 01 due Thursday, Jan 15th.

Correction/Reminder: AND (∧) is a conjunction, OR (∨) is a disjunction. Write out truth tables of all
symbols.

Now that we are armed with our basic operators, we can make more complicated propositions, called com-
pound propositions. We can blindly construct these, and their truth value depends on the truth values of its
constituent propositions. (We use parentheses to nest these operations, so you know which inner propositions
are grouped.)

Example: Construct the truth table for the compound proposition (p→ q) ∧ (¬p→ ¬q).

Example: Construct the truth table for the compound proposition (p→ q) ∨ (¬q → p).

Example: Construct the truth table for the compound proposition (¬p ∧ q) ∨ (p ∧ ¬q).

Note: When you construct a truth table with n propositional variables, you will have 2n = 2× 2× · · · × 2︸ ︷︷ ︸
n times

rows. This is because there are two options for each of the n variables, and these choices are made “indepen-
dently.” See this video on constructing truth tables, specifically how to generate all combinations of truth
values.

Precedence of Logical Operators: Just as − (negation), + and − (addition and subtraction), ∗ (mul-
tiplication), and / (division) have different orders of importance when considering a complicated algebraic
phrase, so too do logical operators. The orders can be confusing, so we will use parentheses as often as
possible to prevent this being an issue.

Order of precedence: ¬, ∧, ∨, →, ↔.

Logic and Binary Representation: One last thing: In a computer, we use 0 and 1 as a “bit”. This is the
most basic computing element. We can treat 1 as T and 0 as F and find an equivalence in terms. But more
importantly, if we perform bit-wise operations on a string of bits, then we are determining the compound
proposition for each combination of bits.

Example:

x = 101101

y = 011001

x ∧ y = 001001

x ∨ y = 111101

x⊕ y = 110100

2.0.2 Recommended Homework

Roesn 1.1: 31–39, 43–44.

2.1 Rosen 1.2 — Applications of Propositional Logic

Application 1: Translating English Sentences. (Important for lawyers in particular!)

Application 2: Systems Specifications. (Don’t forget about testing!)

Application 3: Logic Puzzles.

http://www.logic-puzzles.org/init.php

3

https://www.youtube.com/watch?v=_uTpEXn-lBg
http://www.logic-puzzles.org/init.php


COM S 330 — Lecture Notes — Week of Jan 12–16

The Knights and Knaves (see http://en.wikipedia.org/wiki/Knights_and_Knaves) problem is about
two types of people: Knights always say the truth, and Knaves always lie. Based on your interaction, you
need to determine if they are a Knight or a Knave and also possibly some other information.

You come to a fork in the road. The two ways are guarded by two people. There is a sign saying
“Exactly one of these guards is a Knight, and the other is a Knave. Exactly one path leads to
your goal, the other leads to certain death.”

“Would you answer “Yes” if I asked you “Does your path lead to freedom?””

“Would the other one answer “Yes” if I asked them “Does your path lead to freedom?””

The Boxes from http://www.folj.com/puzzles/

There are three boxes. One is labeled ”APPLES” another is labeled ”ORANGES”. The last one
is labeled ”APPLES AND ORANGES”. You know that each is labeled incorrectly. You may ask
me to pick one fruit from one box which you choose.

How can you label the boxes correctly?

Example: See book for “Muddy Children Puzzle”

Application 4: Paradoxes.

Liar Paradox: Suppose a Knight or a Knave says “I always lie.” Is the person a Knight or a Knave?

Alt 1: “This sentence is false.”

Alt 2: “The next sentence is false.” “The previous sentence is true.”

Application 5: Logical Circuits.

Using NOT, OR, and AND gates, we can construct circuits to compute compound propositions.

Can we make our circuits more efficient? Fewer gates? Smaller depth? We should not modify the behavior
while we do this! This means we must develop methods to demonstrate equivalence between logical statements.

2.1.1 Recommended Homework

Rosen 1.2: 1–5, 7–12, 15–18, 19–23, 24–31, 40–43.

Explore http://en.wikipedia.org/wiki/Category:Logic_puzzles

4

http://en.wikipedia.org/wiki/Knights_and_Knaves
http://www.folj.com/puzzles/
http://en.wikipedia.org/wiki/Category:Logic_puzzles


COM S 330 — Lecture Notes — Week of Jan 12–16

3 Friday, January 16

3.1 Rosen 1.3 — Propositional Equivalences

Question: Given two complex propositional statements, can you tell if they always evaluate to the same
value?

Alternative viewpoint: Given two logic circuits, do they always output the same value?

One method: Exhaustively list the truth table. Very difficult in general!

Def: A compound proposition that is always true (no matter what truth values of the propositional variables)
is a tautology.

Examples: b ∨ ¬b. (p ∧ ¬p)→ (q ∧ ¬q).

Def: A compound proposition that is always false (no matter what truth values of the propositional variables)
is a contradiction.

Examples: b ∧ ¬b. (p ∨ q)↔ (¬p ∧ ¬q).

Def: A proposition that is neither a tautology or a contradiction is a contingency.

Def: The compound propositions p and q are called logically equivalent if p↔ q is a tautology. The notation
p ≡ q denotes that p and q are logically equivalent.

DeMorgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

Extended DeMorgan’s Laws

¬(p1 ∧ p2 ∧ . . . ∧ pn) ≡ ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn
¬(p1 ∨ p2 ∨ . . . ∨ pn) ≡ ¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn

Extended DeMorgan’s Laws (Concise)

¬
∧n

i=1 pi ≡
∨n

i=1(¬pi)
¬
∨n

i=1 pi ≡
∧n

i=1(¬pi)

We will use the notation
n∨

i=1

pi to denote p1 ∨ p2 ∨ . . . ∨ pn,

and
n∧

i=1

pi to denote p1 ∧ p2 ∧ . . . ∧ pn,

the same way we use
n∑

i=1

xi to denote x1 + x2 + · · ·+ xn.

For more logical equivalences, see the Logic Cheatsheet!

Constructing New Logical Equivalences

We can create logical equivalences by brute-force using the truth table, but that becomes very hard and
boring. Let’s instead use a very limited form of proof!

Essentially, we use our list of logical equivalences to translate from one statement to the other!

Example: Demonstrate the equivalence (p→ r) ∨ (q → r) ≡ (p ∧ q)→ r.

5



COM S 330 — Lecture Notes — Week of Jan 12–16

(p→ r) ∨ (q → r) ≡ (¬p ∨ r) ∨ (q → r) Logical equivalence of conditional statement

≡ (¬p ∨ r) ∨ (¬q ∨ r) Logical equivalence of Conditional statement

≡ (¬p ∨ ¬q) ∨ (r ∨ r) Commutative law

≡ (¬p ∨ ¬q) ∨ r Idempotent law

≡ ¬(p ∧ q) ∨ r DeMorgan’s law

≡ (p ∧ q)→ r Logical equivalence of conditional statement

Let p be a compound proposition. We could demonstrate that p is a tautology by demonstrating the
equivalence p ≡ T. We could demonstrate that p is a contradiction by demonstrating the equivalence p ≡ F.

Example: Demonstrate that (a ∨ b) ∧ (¬a ∨ c)→ (b ∨ c) is a tautology.

(a ∨ b) ∧ (¬a ∨ c)→ (b ∨ c) ≡ ¬ [(a ∨ b) ∧ (¬a ∨ c)] ∨ (b ∨ c) Logical equivalence of conditional statement

≡ ¬(a ∨ b) ∨ ¬(¬a ∨ c) ∨ (b ∨ c) DeMorgan’s Law

≡ (¬a ∧ ¬b) ∨ ¬(¬a ∨ c) ∨ (b ∨ c) DeMorgan’s Law

≡ (¬a ∧ ¬b) ∨ (¬(¬a) ∧ ¬c) ∨ (b ∨ c) DeMorgan’s Law

≡ (¬a ∧ ¬b) ∨ (a ∧ ¬c) ∨ (b ∨ c) Double Negation Law

≡ (¬a ∧ ¬b) ∨ b ∨ (a ∧ ¬c) ∨ c Commutative Law

≡ [(¬a ∨ b) ∧ (¬b ∨ b)] ∨ (a ∧ ¬c) ∨ c Distributive Law

≡ [(¬a ∨ b) ∧ (¬b ∨ b)] ∨ [(a ∨ c) ∧ (¬c ∨ c)] Distributive Law

≡ [(¬a ∨ b) ∧T] ∨ [(a ∨ c) ∧ (¬c ∨ c)] Negation Law

≡ [(¬a ∨ b) ∧T] ∨ [(a ∨ c) ∧T] Negation Law

≡ (¬a ∨ b) ∨ [(a ∨ c) ∧T] Identity Law

≡ (¬a ∨ b) ∨ (a ∨ c) Identity Law

≡ (¬a ∨ a) ∨ (b ∨ c) Commutative Law

≡ T ∨ (b ∨ c) Negation Law

≡ T Domination Law

Propositional Satisfiability

Given a compound proposition, we can demonstrate it is NOT a contradiction by simply giving one example
assignment of truth values to the propositional variables such that the compound proposition is true.

Def: A compound proposition is satisfiable if there is an assignment of truth values to its variables that
makes it true; such an assignment is a solution. Otherwise, the proposition is unsatisfiable (which means it
is a contradiction!).

Example: Determine if the compound proposition (p ∨ q) ∧ (¬p ∨ ¬q) is satisfiable. [Hint: the first clause
says that one of p and q is true, while the second says that one is false.]

Example: Determine if the compound proposition (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (¬p ∨ q) is satisfiable.

Example: Determine if the compound proposition (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) is satisfiable.

6



COM S 330 — Lecture Notes — Week of Jan 12–16

(p ∨ q) ∧ (¬p ∨ ¬q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ≡ (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p→ q) ∧ (q → p) Logical equivalence of con-
ditional statement

≡ (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p↔ q) Logical equivalence using
biconditional statement

≡ (¬p→ q) ∧ (q → ¬p) ∧ (p↔ q) Logical equivalence of con-
ditional statement

≡ (¬p↔ q) ∧ (p↔ q) Logical equivalence using
biconditional statement

≡ ¬(p↔ q) ∧ (p↔ q) Logical equivalence using
biconditional statement

≡ ¬r ∧ r Substitution r = p↔ q

≡ F Negation law

Applications

Book has Sudoku. Let’s talk about KenKen. But first: Latin Squares!

Def: Let n be a positive integer. An n × n latin square is an n × n table where every row and column
contains the numbers 1, . . . , n exactly once.

We can create a proposition that is true if we have a latin square. We first need to create propositional
variables.

Let p(i, j, k) be true if the i, j position has value k.

For i, j, the compound proposition
n∧

k=1

[p(i, j, k)→ ¬p(i, j, k′)]

guarantees that at most one number is placed in the i, j position. For integers i and k, the compound
proposition

n∨
j=1

p(i, j, k)

guarantees that the number k appears somewhere in the ith row. Similarly,

n∨
i=1

p(i, j, k)

guarantees that the number k appears somewhere in the jth column. To take the conjunction of all of these
statements, we find a compound proposition that is true if and only if the values p(i, j, k) correspond to a
latin square.

n∧
i=1

n∧
j=1

n∧
k=1

∧
k′ 6=k

[p(i, j, k)→ ¬p(i, j, k′)] ∧
n∧

i=1

n∧
k=1

n∨
j=1

p(i, j, k) ∧
n∧

j=1

n∧
k=1

n∨
i=1

p(i, j, k).

Exercise: Determine why we do not need to add propositions for the following properties:
1. The i, j position contains at least one number.
2. The ith row contains the number k at most once.
3. The jth column contains the number k at most once.

KenKen is a puzzle that starts with a partially-complete latin square [that is, some of the propositional
variables p(i, j, k) are set to T; e.g. p(2, 1, 5) is part of our conjunction]. But also, other constraints are
added! Specifically, some contiguous blocks of the square are grouped together and an algebraic operation
(+, −, ×, or /) is specified along with the desired output when applying that operation to those numbers.
These can be specified using our logic, although in a more complicated way!

7



COM S 330 — Lecture Notes — Week of Jan 12–16

Example: Suppose that in a 7× 7 KenKen, the pair of positions (3, 4) and (4, 4) have the constraint “×21”
Then, we explore the possible values that can multiply to find 21. These are exactly 3× 7 and 7× 3. So, we
add to our list of constraints the disjunction:

[[p(3, 4, 3) ∧ p(3, 4, 7)] ∨ [p(3, 4, 7) ∧ p(3, 4, 3)]]

Example: Suppose that in a 7× 7 KenKen, the pair of positions (3, 4) and (4, 4) have the constraint “/2”
Then, we explore the possible values that can divide to form 2. These are 2/1, 4/2 and 6/3. So, we add to
our list of constraints the disjunction:

[[p(3, 4, 1) ∧ p(3, 4, 2)] ∨ [p(3, 4, 2) ∧ p(3, 4, 1)] ∨ [p(3, 4, 2) ∧ p(3, 4, 4)] ∨ [p(3, 4, 4) ∧ p(3, 4, 2)] ∨ [p(3, 4, 3) ∧ p(3, 4, 6)] ∨ [p(3, 4, 6) ∧ p(3, 4, 3)]]

8


	Monday, January 12
	Rosen 1.1 — Propositional Logic
	Recommended Homework


	Wednesday, January 14
	Recommended Homework
	Rosen 1.2 — Applications of Propositional Logic
	Recommended Homework


	Friday, January 16
	Rosen 1.3 — Propositional Equivalences


