
COM S 330 — Lecture Notes — Week of Jan 21–23

1 Wednesday, January 21

Reading: Rosen: 1.4, 1.5

1.1 Rosen 1.4 — Predicates and Quantifiers

Suppose that we know the proposition “All cellphones have GPS antennae.” We can then rule out the
proposition “My cell phone does not have a GPS antenna.” and we can also verify “Your cellphone has
a GPS antenna.” We can be sure of these specific propositions, because we know a universal proposition.
Keyword: all.

Def: A predicate is a statement about the subject of a proposition. If a proposition has a variable, say x,
as a subject, then the proposition is a propositional function P on the variable x, whose truth value P (x)
depends on the value of x.

Ex: “x ≥ 3” (with x = 6: “6 ≥ 3”) “x is a hamster.” (with x =“Harry”, “Harry is a hamster.”) “Cell phone
model x has a GPS antenna.” (with x =“iPhone 6”, “Cell phone model iPhone 6 has a GPS antenna.”)
“x + y = 4” (with x = 3 and y = 2, “3 + 2 = 4”)

We can use variables to split propositions into parts: “For all cellphones x, x has a GPS antenna.” If this
statement is true, then no matter what cell phone we use for x, the sentence “x has a GPS antenna.” will
evaluate to true.

Def: When using multiple variables, such as “x1 + x2 + x3 ≥ 0,” we can use the propositional function
P (x1, x2, x3) to denote the multi-variate sentence. P is also called a n-place predicate or n-ary predicate
when using n variables.

Sometimes we want to know how “often” a proposition is satisfied. That is: is it always true? is it true at
least once? or is it never true? This is the concept of quantification. We wish to “quantify” how often the
propositional function is true. However, we must first identify the possible values the variables can take. The
domain of discourse (or universe of discourse) is the collection of all values for a certain variable. Frequently
this will only be implied, not explicit.

Def: The universal quantification of P (x) is the statement “P (x) for all values of x in the domain.” This
is denoted by the symbolic sentence ∀xP (x). An element for which P (x) is false is a counterexample to
∀xP (x).

Example: Let P (x) denote “x · 1 = x” where the domain for x is the integers. Then ∀xP (x) denotes “For
all integers x, x · 1 = x,” which is true. If Q(x) denotes “x is even,” then ∀xQ(x)” denotes “For all integers
x, x is even,” which is false. A counterexample to ∀xQ(x) is x = 3, since 3 is an integer and “3 is even” is
false.

Def: The existential quantification of P (x) is the statement “P (x) for some value of x in the domain.” This
is denoted by the symbolic sentence ∃xP (x). An element for which P (x) is true is an example to ∃xP (x).

Example: If Q(x) denotes “x is even,” where the domain for x is the integers, then ∃xQ(x)” denotes “There
exists an integer x where x is even,” which is true. Let P (x) denote “x · 1 = −x”. Then ∃xP (x) denotes
“There exists an integer x such that x · 1 = −x,” which is true. An example to ∃xP (x) is x = 0, since
0 = −0.

Statement When True? When False?

∀xP (x) P (x) is true for every x There is an x for which P (x) is false

∃xP (x) There is an x for which P (x) is true P (x) is false for every x

Restricted Domains: Some times we want to specify our universe of discourse inside our proposition. So,
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immediately after our quantifier, we can put int a restricted domain, as in “∀x ≥ 0(
√
x2 = x).” This sentence

reads as “For all (real numbers) x where x ≥ 0, the square root of x2 is equal to x.”

Note: Quantifiers have precedence over all other operators, so the sentence “∀xP (x) ∧ Q(x)” is properly
parenthesized as (∀xP (x)) ∧ Q(x). However, this rarely occurs, as when using a quantifier, you should not
use the same variable outside of the quantified statement. Instead, we could have a propositional function
P (y) = “(∀xQ(x, y)) ∧ R(y)” where y is the only “global” variable, and the variable x has scope only
within the quantified statement. An example of such a phrase is: P (y) = “(∀x(yx > 0)) ∧ (y < 1).′′ Here,
Q(x, y) = (yx > 0) and R(y) = (y < 1). [Observe P (y) is true exactly when 0 < y < 1.]

Def: When a variable appears next to a quantifier, (such as ∀x or ∃y) then the variable is bounded. Otherwise,
the variable is free and is part of the input to the propositional function. In the example P (y) above, x is
bounded and y is free.

1.1.1 Logical Equivalences Involving Quantifiers

There are a few logical equivalences to remember:

Table: Logical Equivalences Using Quantifiers

Equivalence Name

∀x(P (x) ∧Q(x)) ≡ (∀xP (x)) ∧ (∀xQ(x)) Distributive Laws

∃x(P (x) ∨Q(x)) ≡ (∃xP (x)) ∨ (∃xQ(x))

¬(∀xP (x)) ≡ ∃x¬P (x) DeMorgan’s Laws

¬(∃xP (x)) ≡ ∀x¬P (x)

1.1.2 Suggested Homework

Rosen 1.4: 1-10, 11–20, 35–36, 43–45, 50–51.

1.2 Rosen 1.5 — Nested Quantifiers

When using multiple quantifiers, we need to understand how the order matters. Consider the following
quantified propositions where the domain is real numbers.

P (x, y) = “x + y > 0′′

Q(x, y) = “xy ≥ 0′′

And then consider the following propositions:

1. ∀x∃yP (x, y). :: “For all numbers x there exists a number y such that x + y > 0.”
2. ∃y∀xP (x, y). :: “There exists a number y where for all numbers x we have x + y > 0.”
3. ∀x∃yQ(x, y). :: “For all numbers x there exists a number y such that xy ≥ 0.”
4. ∃y∀xQ(x, y). :: “There exists a number y where for all numbers x we have xy ≥ 0.”

Observe that (1) is true (given any x, let y = 1−x and y is an example for ∃yP (x, y)) but (2) is false (given
any y, let x = −1 − y and observe this x is a counterexample for ∀xP (x, y)). Also observe that (3) and
(4) are both true (let y be an even integer), but the sentences have different meaning (in (3) we can select
our choice of y depending on the value of x (such as y = 1 when x ≥ 0), but in (4) we must select a single
number y (such as y = 2) where xy ≥ 0 for all numbers x.)
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This shifting of meaning does not matter when talking about the same type of quantifier, for instance:

∀x∀y(x + y = y + x), vs. ∀y∀x(x + y = y + x).

The issue arises when the quantifiers alternate.

Statement When True? When False?

∀x∀yP (x, y)
P (x, y) is true for every pair (x, y). There is a pair (x, y) where P (x, y) is false.

∀y∀xP (x, y)

∀x∃yP (x, y) For every x there is a y for which P (x, y)
is true.

There is an x such that P (x, y) is false for every y.

∃x∀yP (x, y) There is an x for which P (x, y) is true for
every y.

For every x there is a y such that P (x, y) is false.

∃x∃yP (x, y)
There a pair (x, y) where P (x, y) is true. P (x, y) is false for all pairs (x, y).

∃y∃xP (x, y)

DeMorgan’s Law for Nested Quantifiers

When using nested quantifiers, keep in mind that we can parenthesize as in the following:

∀x∃y∀zP (x, y, z) ≡ ∀x(∃y(∀z(P (x, y, z)))).

Thus, we can treat each interior proposition as a propositional function of the outer variables and apply
DeMorgan’s law.

¬(∀x(∃y(∀z(P (x, y, z))))) ≡ ∃x¬(∃y(∀z(P (x, y, z))))

≡ ∃x(∀y¬(∀z(P (x, y, z))))

≡ ∃x(∀y(∃z(¬P (x, y, z)))).

1.2.1 Recommended Homework

Rosen 1.5: 1–10, 18–23, 24-28, 30–33, 36–38, 39–40, 48–49.

3



COM S 330 — Lecture Notes — Week of Jan 21–23

2 Friday, January 23

2.1 Rosen 1.6: Rules of Inference

We will now study a very restricted form of proof. We demonstrate true propositions given a collection of
other true propositions. That is, we will reach certain conclusions given certain premises.

Our proofs will follow a collection of steps, called rules of inference, that allows us to present certain true
statements from others. Steps that appear to be rules of inference, but are flawed, are called fallacies. We
will try to look out for these!

Def: An argument (in propositional logic) is a sequence of propositions. These propositions are either
premises or conclusions. The final proposition is the final conclusion.

Here is a breakdown of these things:

1. premises are propositions that are assumed to be true.

2. conclusions are propositions that are true when all previous propositions are true. These are demon-
strated by applying a rule of inference on some number of previous propositions.

3. the final conclusion is the last conclusion, usually the statement you are trying to prove. If p1, . . . , pn
are the premises and q is the conclusion, your argument demonstrates (p1 ∧ p2 ∧ . . . ∧ pn) → q is a
tautology (understanding that p1, . . . , pn, q are placeholders for compound propositions).

Consider the table of Rules of Inference (next page). Observe that they are all true! How would they be
described using English sentences? Describe some using Truth Tables.

Ex: Demonstrate that if p→ q, ¬p→ r, and r → s, then q ∨ s.

Step Reason

1. p→ q Premise.

2. ¬p→ r Premise.

3. r → s Premise.

4. ¬p→ s Hypothetical syllogism of (2) and (3).

5. p ∨ s Logical equivalence using conditionals from (4).

6. ¬p ∨ q Logical equivalence using conditionals from (1).

∴ q ∨ s Resolution using (5) and (6).

The way I like to think about this process is that you have a “Bag of Truth” containing all of your premises.
That is, you have a list of compound propositions that you accept as truth. At every step, you take one
or two propositions out of the Bag of Truth, apply a Rule of Inference to create a new proposition, then
put all of the propositions back in the bag. As your bag gets bigger and bigger, hopefully your propositions
look more and more like the proposition you want to have in your bag. Your final conclusion is your goal
proposition, and the last thing to put in the bag!

Other examples:

Ex: Demonstrate that if p→ ¬q, q → ¬r, r → ¬p, then ¬(p ∧ r ∧ q).

Rules of Inference Using Quantifiers

When using quantified statements, we want to be able to instantiate statements, as well as generalize
statements.

Ex: Let P (x, y) be a propositional function. Demonstrate that if ∃x∀yP (x, y), then ∀y∃xP (x, y).
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Here is a list of rules of inference that we can use in order to create an argument.

Rule of Inference Tautology Name
p

∴ p ∨ q
p→ (p ∨ q) Addition

p ∧ q
∴ p

(p ∧ q)→ p Simplification

p
q

∴ p ∧ q
((p) ∧ (q))→ (p ∧ q) Conjunction

p
p→ q

∴ q
(p ∧ (p→ q))→ q Modus ponens

¬q
p→ q

∴ ¬p
(¬q ∧ (p→ q))→ ¬p Modus tollens

p
p↔ q

∴ q
(p ∧ (p↔ q))→ q Modus ponens (Alt.)

¬q
p↔ q

∴ ¬p
(¬q ∧ (p↔ q))→ ¬p Modus tollens (Alt.)

p→ q
q → r

∴ p→ r
[(p→ q) ∧ (q → r)]→ (p→ r) Hypothetical syllogism

p ∨ q
¬p

∴ q
[(p ∨ q) ∧ ¬p]→ q Disjunctive syllogism

p ∨ q
¬p ∨ r

∴ q ∨ r
[(p ∨ q) ∧ (¬p ∨ r)]→ (q ∨ r) Resolution

p↔ q
∴ p→ q

[(p↔ q)]→ (p→ q) Biconditional Simplifi-
cation

Table. Rules of inference.

Rule of Inference Name
∀xP (x)

∴ P (c)
Universal instantiation

P (c) for arbitrary c
∴ ∀xP (x)

Universal generalization

∃xP (x)
∴ P (c) for some c

Existential instantiation

P (c) for some c
∴ ∃xP (x)

Existential generalization

Table. Rules of inference using quantifiers.
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Step Reason

1. ∃x∀yP (x, y) Premise.

2. ∀yP (c, y) for some c Existential instantiation of (1).

3. P (c, d) for some c and arbitrary d Universal instantiation of (2).

4. ∃xP (x, d) for arbitrary d Existential generalization of (3).

∴ ∀y∃xP (x, y) Universal generalization of (4).

Ex: Demonstrate that if ∀x(P (x) → Q(x), ∀x(Q(x) → R(x)), and ¬R(a) for some a in the domain, then
¬P (a).

Recommended Homework: Rosen 1.6: 3–16, 19–22, 23–24, 25–261, 27–29, 33.

1These two are really good problems to try!
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Using rules of inference can be boring and complicated, and make proofs longer than they need to be. Here is
an example of a problem we have seen before, and its evaluation using rules of inference (including shortcuts
not in the book) makes it very complicated and uninteresting!

Big Example: Consider the statement “A and B are either Knights or Knaves. Knights always tell the
truth. Knaves always lie. A says “We are both knights.” B says “A is a Knave.” Therefore, A is a Knave
and B is a Knight.”

Let us demonstrate this using rules of inference. Use the following propositional functions:

1. k(x) : “x is a Knight.”

2. n(x) : “x is a Knave.”

3. t(x) : “x told the truth.”

Step Reason

1. ∀x(k(x) ∨ n(x)) Premise “A and B are either Knights or Knaves.”

2. ∀x(k(x)→ t(x)) Premise “Knights always tell the truth.”

3. ∀x(n(x)→ ¬t(x)) Premise “Knaves always lie.”

4. t(A)↔ (k(A) ∧ k(B)) Premise “A says “We are both Knights.””

5. t(B)↔ n(A) Premise “B says “A is a Knave.””

6. t(A)→ (k(A) ∧ k(B)) Biconditional simplification from (4).

7. t(A)→ k(B) Simplification from (6).

8. k(B)→ t(B) Universal instantiation from (2).

9. t(A)→ t(B) Hypothetical syllogism of (8) and (7).

10. t(B)→ n(A) Biconditional simplification from (5).

11. n(A)→ ¬t(A) Universal instantiation from (3).

12. t(A)→ ¬t(A) Hypothetical syllogism of (10) and (11).

13. ¬t(A) ∨ ¬t(A) Logical equivalence using conditional from (12).

14. ¬t(A) Idempotent law from (13).

15. k(A)→ t(A) Universal Instantiation from (2).

16. ¬k(A) Modus tollens from (15) and (14).

17. k(A) ∨ n(A) Universal instantiation from (1).

18. n(A) Disjunctive syllogism from (16) and (17).

19. n(A)→ t(B) Biconditional simplification from (5).

20. t(B) Modus ponens from (19) and (18).

21. n(B)→ ¬t(B) Universal instantiation from (3).

22. ¬n(B) Modus tollens from (21) and (20).

23. k(B) ∨ n(B) Universal instantiation from (1).

24. k(B) Disjunctive syllogism from (23) and (22).

∴ n(A) ∧ k(B) Addition from (18) and (24).

Here is a way to argue the same thing, using English sentences. We use numbers to indicate how the
statements above connect to this argument:

(6) If A tells the truth, then A and B are both Knights; (7) Specifically, if A tells the truth, then B is a
Knight. (8) If B is a Knight, then B tells the truth. (9) Hence if A tells the truth, then B tells the truth.
(10) If B tells the truth, then A is a Knave. (11) If A is a Knave, then A always lies. (12) Thus, if A tells
the truth, then A lies. (13) This is equivalent to either A lies or A lies; (14) hence A lies. (15–16) Since A
lies, A is not a Knight. (17–18) A is either a Knight or a Knave, and hence A is a Knave. (19–20) Since A
is a Knave, B told the truth. (21–22) Since B told the truth, B is not a Knave. (23–24) Since B is not a
Knave, B is a Knight. Therefore, A is a Knave and B is a Knight.
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