1 Monday, February 2

1.1 Rosen 2.1 – Sets

Reading: Rosen 2.1. LLM 4.1. Ducks 2.1, 2.2.

Def: A set is an unordered collection of objects, called *elements* or *members* of the set. A set is said to *contain* its elements. We write $a \in A$ to denote that a is an element of the set A. We write $a \notin A$ to denote that a is not an element of the set A.

A set can be described by listing its entries between curly braces: $A = \{a, b, c, d\}$ (the roster method).

A set can be defined using propositional logic, where the set contains all elements that satisfy the propositional function: $A = \{x : P(x) \text{ is true }\}$. (Some use colon, some use vertical bar. Both are accepted, but I like the colon.)

Ex:

Def: \mathbb{N} , \mathbb{Z} , \mathbb{Z}^+ , \mathbb{Q} , \mathbb{R} , \mathbb{R}^+ , \mathbb{C} .

Def: Intervals [a, b], [a, b), (a, b], (a, b).

Ex: $\{\mathbb{N}, \mathbb{Q}, \mathbb{Z}, \mathbb{R}, \mathbb{C}\}$

Def: Set are equal if they contain the same elements.

Def: Empty set \emptyset , singleton set.

Note: We say elements are "objects" without defining "object." This is on purpose: a formal definition is outside the scope of this class. In the current definition, (and almost all definitions of set theory) we can find *paradoxes*.

1.2 Subsets

Def: Let A and B be sets. A is a subset of B, denoted $A \subseteq B$, if every element of A is an element of B. (If A and B are also not equal, then we use $A \subset B$.)

Ex: $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}, C = \{1, 3, 5\}.$

To show that A is a subset of B, you demonstrate $\forall x, (x \in A) \rightarrow (x \in B)$.

To show that A is not a subset of B, you demonstrate $\exists x, (x \in A) \land (x \notin B)$.

Thm: For every set $S, \emptyset \subseteq S$ and $S \subseteq S$.

To show that A and B are equal, you demonstrate $A \subseteq B$ and $B \subseteq A$.

Def: Let S be a set. If there are exactly n distinct elements of S, then S is a *finite set* and n is the *cardinality* of S, denoted |S|. (If S has an infinite number of elements, then we say $|S| = \infty$.)

Def: If S is a set, then the *power set* of S, denoted $\mathcal{P}(S)$ or 2^S , is the set of subsets of S.

1.3 Cartesian Products

Def: An ordered *n*-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, and so on until a_n the *n*th element.

2-tuples are called *ordered pairs*.

Def: If A and B are sets, then the *cartesian product* of A and B, denoted $A \times B$, is the set of ordered pairs

(a, b) where the first element a is an element of A and the second element b is an element of B.

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

Def: If A_1, \ldots, A_n are sets, then the *cartesian product* of A_1, \ldots, A_n , denoted $A_1 \times A_2 \times \cdots \times A_n$ or $\prod_{i=1}^n A_i$, is the set of *n*-tuples (a_1, a_2, \ldots, a_n) where for all *i* with $1 \le i \le n$, the *i*th element a_i is an element of A_i .

$$\prod_{i=1}^{n} A_{i} = A_{1} \times A_{2} \times \cdots \times A_{n} = \{(a_{1}, a_{2}, \dots, a_{n}) : \forall i \in \{1, \dots, n\} a_{i} \in A_{i}\}.$$

1.3.1 Suggested Homework

Rosen 2.1: 1,3-8,9-11, 14-17, 18-24, 25*, 26-30, 35-37, 46*, 47*.

2 Wednesday, February 4

2.1 Rosen 2.2 – Set Operations

Reading: Rosen 2.2, LLM 4.1, 4.4, Ducks 2.2.4.

Def: union $A \cup B$, intersection $A \cap B$, disjoint $(A \cap B = \emptyset)$, difference $(A - B \text{ or } A \setminus B)$ also called complement of B with respect to A, complement $(\overline{A} = U \setminus A)$ [Redefine difference as $A \setminus B = A \cap \overline{B}$], symmetric difference $(A \oplus B = A \triangle B = (A \setminus B) \cup (B \setminus A))$

Thm: Let A and B be subsets of U. $A \triangle B = (A \cup B) \setminus (A \cap B)$.

Proof. Let A and B be subsets of U. The set $A \triangle B$ consists of elements $a \in U$ such that $(a \in A \text{ and } a \notin B)$ or $(a \in B \text{ and } a \notin A)$. The set $(A \cup B) \setminus (A \cap B)$ consists of elements $a \in U$ such that $(a \in A \text{ or } a \in B)$ and not $(a \in A \text{ and } a \in B)$. To show equality, we must show $A \triangle B \subseteq (A \cup B) \setminus (A \cap B)$ and $(A \cup B) \setminus (A \cap B) \subseteq A \triangle B$.

 $(A \triangle B \subseteq (A \cup B) \setminus (A \cap B))$ Let $a \in A \triangle B$. Since $(a \in A \text{ and } a \notin B)$ or $(a \in B \text{ and } a \notin A)$, we consider two cases. If $a \in A$ and $a \notin B$, then a is in $A \cup B$ and a is not in $A \cap B$. Therefore, a is in $(A \cup B) \setminus (A \cap B)$. If $a \in B$ and $a \notin A$, then a is in $A \cup B$ and a is not in $A \cap B$. Therefore, a is in $(A \cup B) \setminus (A \cap B)$.

 $((A \cup B) \setminus (A \cap B) \subseteq A \triangle B)$ Let $a \in (A \cup B) \setminus (A \cap B)$. Since $a \in (A \cup B)$, we have that $a \in A$ or $a \in B$. If $a \in A$, then since $a \notin (A \cap B)$, we have $a \notin B$. Therefore, $a \in A \triangle B$. If $a \in B$, then since $a \notin (A \cap B)$, we have $a \notin A$. Therefore, $a \in A \triangle B$. \Box

This would be easier if we have some helpful tools. We will prove it again later.

Note: Suppose the universe U is a finite set. Then list the elements of U as a_1, a_2, \ldots, a_n where n = |U|. For each set $A \subseteq U$, we can associate A with a binary string $\mathbf{x}_A = (x_1, \ldots, x_n)$ where $x_i = 1$ if and only if $a_i \in A$. So, this bit string encodes the truth values of the n propositions $p_i = a_i \in A''$.

	And/Intersection	Or/Union	Xor/Symmetric Difference
Sets	$A \cap B$	$A \cup B$	$A \triangle B$
Logic	$(a \in A \cap B) \leftrightarrow (a \in A \land a \in B)$	$(a \in A \cup B) \leftrightarrow (a \in A \lor a \in B)$	$(a \in A \triangle B) \leftrightarrow (a \in A \oplus a \in B)$
Bit Strings	$\mathbf{x}_{A\cap B} = \mathbf{x}_A \wedge \mathbf{x}_B$	$\mathbf{x}_{A\cup B} = \mathbf{x}_A \lor \mathbf{x}_B$	$\mathbf{x}_{A riangle B} = \mathbf{x}_A \oplus \mathbf{x}_B$

See Table ?? for a list of set identities.

Thm: Let A and B be subsets of U. $A \triangle B = (A \cup B) \setminus (A \cap B)$.

Proof. We will use set identities.

TABLE: Logical Equivalences and Set Identities			
Logical Equivalence	Set Identity	Name	
$p \wedge \mathbf{T} \equiv p$	$A \cap \mathcal{U} = A$	Identity laws	
$p \lor \mathbf{F} \equiv p$	$A\cup \varnothing = A$		
$p \lor \mathbf{T} \equiv \mathbf{T}$	$A \cup \mathcal{U} = \mathcal{U}$	Domination laws	
$p \wedge \mathbf{F} \equiv \mathbf{F}$	$A \cap \varnothing = \varnothing$		
$p \lor p \equiv p$	$A \cup A = A$	Idempotent laws	
$p \wedge p \equiv p$	$A \cap A = A$		
$\neg(\neg p) \equiv p$	$\overline{(\overline{A})}$	Double negation law / Complementation law	
$p \lor q \equiv q \lor p$	$A \cup B = B \cup A$	Commutative laws	
$p \wedge q \equiv q \wedge p$	$A \cap B = B \cap A$		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(A \cup B) \cup C = A \cup (B \cup C)$	Associative laws	
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(A \cap B) \cap C = A \cap (B \cap C)$		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws	
$p \wedge (q \lor r) \equiv (p \wedge q) \lor (p \wedge r)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
$\neg (p \land q) \equiv \neg p \lor \neg q$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws	
$\neg (p \lor q) \equiv \neg p \land \neg q$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$		
$p \lor (p \land q) \equiv p$	$A \cup (A \cap B) = A$	Absorption laws	
$p \land (p \lor q) \equiv p$	$A \cap (A \cup B) = A$		
$p \lor \neg p \equiv \mathbf{T}$	$A\cup\overline{A}=\overline{\mathcal{U}}$	Negation laws /	
$p \land \neg p \equiv \mathbf{F}$	$A \cap \overline{A} = \emptyset$	Complement laws	

Table 1: Set Identities.

$$\begin{array}{lll} A \triangle B &= (A \setminus B) \cup (B \setminus A) & \text{Definition of Symmetric Difference} \\ &= (A \cap \overline{B}) \cup (B \cap \overline{A}) & \text{Definition of Set Subtraction} \\ &= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A}) & \text{Distributive Law} \\ &= ((A \cup B) \cap (\overline{B} \cup B)) \cap ((A \cap \overline{A}) \cup (\overline{B} \cap \overline{A})) & \text{Distributive Law} \\ &= ((A \cup B) \cap U) \cap ((A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})) & \text{Complement Law} \\ &= ((A \cup B) \cap U) \cap (U \cap (\overline{B} \cup \overline{A})) & \text{Complement Law} \\ &= (A \cup B) \cap (U \cap (\overline{B} \cup \overline{A})) & \text{Identity Law} \\ &= (A \cup B) \cap (\overline{B} \cup \overline{A}) & \text{Identity Law} \\ &= (A \cup B) \cap (\overline{A} \cap \overline{B}) & \text{DeMorgan's Law} \\ &= (A \cup B) \setminus (A \cap B) & \text{Definition of Set Subtraction} \end{array}$$

We have thus demonstrated the equality of these sets.

2.1.1 Suggested Homework

 $\text{Rosen 2.2: } 5\text{--}10, \, 11\text{--}17, \, 18^*, \, 19\text{--}20, \, 32\text{--}39, \, 40^*, \, 41^*, \, 46^*, \, 47\text{--}51, \, 53, \, 57, \, 59\text{--}60. \\$

3 Friday, February 6

3.1 Set Leftovers

Def: A and B are *disjoint* if $A \cap B = \emptyset$.

Generalized Unions and Intersections:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n.$$
$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n.$$

Def: A subset R of $A \times B$ is called a *relation* between A and B. The ordered pairs in R describe pairs (a, b) that are related in some way.

Show how to visualize $A \times B$ and a relation using a bipartite graph.

Ex: Let $A = \{1, \ldots, n\}$ and $B = \mathcal{P}(A)$. Let $R = \{(S,T) : S, T \in \mathcal{P}(A), S \subseteq T\}$. Then $R \subseteq \mathcal{P}(A) \times \mathcal{P}(A)$ and the "relation" of a pair $(S,T) \in R$ is "S is a subset of T."

Not all relations are as nicely defined as the one above.

3.2 Rosen 2.3 – Functions

Reading: Rosen 2.3, LLM 4.3, Ducks 3.1, 3.2.

Def: Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \to B$.

Def: domain, codomain, image (f(a) = b), preimage, range, maps A to B.

Draw pictures of the above things.

Examples:

$$f: \mathbb{Z} \to \mathbb{Q}, \quad f(a) = \frac{1}{1+|a|}.$$
$$f: \mathbb{Z} \to \mathbb{Z}, \quad f(a) = 2a$$
$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2.$$

$$f: \{a, b, c\} \to \{1, 2, 3, 4\}, \quad f(a) = 1, f(b) = 2, f(c) = 1.$$

Ex: With the finite set examples, discuss how functions create relations, but not all relations create functions. **Def:** If $f : A \to B$ and $S \subseteq A$, let $f(S) = \{f(a) : a \in S\}$, and call f(S) the range of S. **Def:** integer-valued, real-valued.

Def: Let $f_1, f_2 : \mathbb{R} \to \mathbb{R}$. $(f_1 + f_2)(x) = f_1(x) + f_2(x), (f_1 f_2)(x) = f_1(x) f_2(x)$.

3.2.1 Types of Functions

Def: *injective* (or *one-to-one*), *surjective* (or *onto*), and *bijective*.

Let $f: A \to B$ be a function.

To show that f is injective: Prove $\forall x, y \in A(f(x) = f(y) \rightarrow x = y)$.

To show that f is NOT injective: Prove $\exists x, y \in A(f(x) = f(y) \land x \neq y)$.

To show that f is surjective: Prove $\forall y \in B \exists x \in A(f(x) = y)$.

To show that f is NOT surjective: Prove $\exists y \in B \forall x \in A(f(x) \neq y)$.

Def: Let f be a bijective function from A to B. The *inverse function* of f is the function, denoted f^{-1} , that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b, i.e. $f^{-1}(b) = a$ when f(a) = b.

A bijective function is *invertible*, as we can construct the inverse. A function $f : A \to B$ that is not bijective is *not invertible*, since one of two things fails:

- f is not injective, so f(a) = f(a') = b for two elements $a, a' \in A$ where $a \neq a'$. Then $f^{-1}(b)$ cannot be both a and a'.
- f is not surjective, so for some element $b \in B$ there is no element $a \in A$ where f(a) = b, so $f^{-1}(b)$ cannot be any element of A.

Def: If $f : A \to B$ and $g : B \to C$ are functions, then the *composition of* g and f, denoted $g \circ f$, is the function $g \circ f : A \to C$ where $(g \circ f)(a) = g(f(a))$ for all $a \in A$.

Draw a picture.

Note: If f is a bijection, then $f^{-1} \circ f : A \to A$ is the *identity map*: $f^{-1} \circ f(a) = a$. Note that $f \circ f^{-1} : B \to B$.

3.2.2 Plots of Functions

A drawing of a real-valued function on the (x, y)-plane is a *plot* of the function. (Not a *graph* because that means something DIFFERENT in this class!)

Ex: $f : \mathbb{Z} \to \mathbb{Z}$: $f(x) = x^2$. Ex: $f : \mathbb{R} \to \mathbb{R}$: $f(x) = \lfloor x \rfloor$. Ex: $f : \mathbb{R} \to \mathbb{R}$: $f(x) = \lceil x \rceil$. Ex: $f : \mathbb{R} \to \mathbb{R}$: $f(x) = \lceil x \rceil$.

Def: The factorial function $*! : \mathbb{N} \to \mathbb{Z}^+$, denoted by n!, is the function $n(n-1)(n-2)\cdots(3)(2)(1)$ or $\prod_{i=1}^{n} i$. (Note: The empty product is considered to be multiplied by 1, so 0! = 1. There is a reason for this!)

3.2.3 Suggested Homework

Rosen 2.3: 1-3, 10-15, 20-25, 26*, 28-29, 33-37, 42-44, 47, 77.