COM S 330 — Lecture Notes — Week of Feb 2-6

1 Monday, February 2

1.1 Rosen 2.1 — Sets

Reading: Rosen 2.1. LLM 4.1. Ducks 2.1, 2.2.

Def: A set is an unordered collection of objects, called elements or members of the set. A set is said to
contain its elements. We write a € A to denote that a is an element of the set A. We write a ¢ A to denote
that a is not an element of the set A.

A set can be described by listing its entries between curly braces: A = {a,b,c,d} (the roster method).

A set can be defined using propositional logic, where the set contains all elements that satisfy the propositional
function: A = {z: P(x) is true }. (Some use colon, some use vertical bar. Both are accepted, but I like the
colon.)

Ex:

Def: N, Z, Z*, Q, R, R*, C.

Def: Intervals [a,b], [a,b), (a,b], (a,b).

Ex: {N,Q,Z,R,C}

Def: Set are equal if they contain the same elements.
Def: Empty set @, singleton set.

Note: We say elements are “objects” without defining “object.” This is on purpose: a formal definition is
outside the scope of this class. In the current definition, (and almost all definitions of set theory) we can
find paradoxes.

1.2 Subsets

Def: Let A and B be sets. A is a subset of B, denoted A C B, if every element of A is an element of B. (If
A and B are also not equal, then we use A C B.)

Ex: A={1,2,3}, B={1,2,3,4,5}, C = {1,3,5}.

To show that A is a subset of B, you demonstrate Vz, (z € A) — (z € B).
To show that A is not a subset of B, you demonstrate 3z, (z € A) A (z ¢ B).
Thm: For every set S, @ C Sand S C S.

To show that A and B are equal, you demonstrate A C B and B C A.

Def: Let S be a set. If there are exactly n distinct elements of S, then S is a finite set and n is the cardinality
of S, denoted |S|. (If S has an infinite number of elements, then we say |S| = c0.)

Def: If S is a set, then the power set of S, denoted P(S) or 29, is the set of subsets of S.

1.3 Cartesian Products

Def: An ordered n-tuple (a1, as,...,a,) is the ordered collection that has a; as its first element, as as its
second element, and so on until a, the nth element.

2-tuples are called ordered pairs.

Def: If A and B are sets, then the cartesian product of A and B, denoted A x B, is the set of ordered pairs
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(a,b) where the first element a is an element of A and the second element b is an element of B.

Ax B={(a,b):a€ ANbE B}.

Def: If Ay,..., A, are sets, then the cartesian product of Ay,...,A,, denoted A; X Ay x---Xx A, or H?:l A;,
is the set of n-tuples (a1, a9, ...,a,) where for all ¢ with 1 <14 <n, the ith element a; is an element of 4;.

HAi:Al X Ay x - x Ay, = {(a1,a2,...,a,) : Vi € {1,...,n}a; € A;}.

i=1

1.3.1 Suggested Homework

Rosen 2.1: 1,3-8,9-11, 14-17, 18-24, 25%, 26-30, 35-37, 46, 47*.
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2 Wednesday, February 4

2.1 Rosen 2.2 — Set Operations

Reading: Rosen 2.2, LLM 4.1, 4.4, Ducks 2.2.4.

Def: union AUB, intersection ANB, disjoint (ANB = @), difference (A—B or A\ B) also called complement
of B with respect to A, complement (A = U\ A) [Redefine difference as A\ B = AN B|, symmetric difference
(A®B=AAB=(A\B)U(B\ A))

Thm: Let A and B be subsets of U. AAB = (AUB)\ (AN B).

Proof. Let A and B be subsets of U. The set AAB consists of elements a € U such that (a € A and
a¢ B)or (e« € Band a ¢ A). The set (AU B)\ (AN B) consists of elements a € U such that (a € A
or a € B) and not (a € A and a € B). To show equality, we must show AAB C (AU B)\ (AN B) and
(AUB)\ (AN B) C AAB.

(AAB C (AUB)\(ANDB)) Let a € AAB. Since (a € Aand a ¢ B) or (a € B and a ¢ A), we consider two
cases. If a € A and a ¢ B, then a is in AU B and a is not in AN B. Therefore, a is in (AU B)\ (AN B). If
a€ Banda¢A, then aisin AU B and a is not in AN B. Therefore, a is in (AU B) \ (AN B).

((AUB)\ (ANB) C AAB) Let a € (AUB)\ (AN B). Since a € (AU B), we have that a € Aor a € B. If
a € A, then since a ¢ (AN B), we have a ¢ B. Therefore, a € AAB. If a € B, then since a ¢ (AN B), we
have a ¢ A. Therefore, a € AAB. O

This would be easier if we have some helpful tools. We will prove it again later.

Note: Suppose the universe U is a finite set. Then list the elements of U as ay,as,...,a, where n = |U|.
For each set A C U, we can associate A with a binary string x4 = (x1,...,2,) where z; = 1 if and only if
a; € A. So, this bit string encodes the truth values of the n propositions p; = “a; € A”.

And/Intersection Or/Union Xor/Symmetric Difference

Sets ANB AUB AAB

Logic | (a€ ANB)+ (a€ ANa€B) | (aecAUB)+ (a€ AVaeB) | (acec AAB)«< (a€ A®a € B)

Bit Strings XANB = XA A XB XAUB = XA V XB XAAB = XA DXB

See Table 77 for a list of set identities.

Thm: Let A and B be subsets of U. AAB = (AUB)\ (AN B).

Proof. We will use set identities.
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TABLE: Logical Equivalences and Set Identities

Logical Equivalence

Set Identity

Name

pANT=0p ANnU=A Identity laws
pVF=p Aug=A
pvT=T AulU=U Domination laws
pAF=F AnNg =g
pVp=p AUA=A Idempotent laws
PAD=Dp ANA=A

L Double negation law /
—(-p)=p (Z) Complementation law
pVqg=qVp AUB=BUA Commutative laws
PAG=qADpP ANB=BnNA

(pvgVr=pV(gVr)
(pAQ Ar=pA(gAT)

(AUB)UC =AU (BUCQC)
(ANB)NC=An(BNC)

Associative laws

pV(gAr) = (pVgA(pVr) | AU(BNC)=(AUB)N(AUC) Distributive laws
pA(gVr) = (pAQ)V(pAr) | AN(BUC)=(ANB)U(ANC)

=(pAq)=-pV—q ANB=AUB De Morgan’s laws
=(pVq)=-pA—q AUB=ANB

pV(pAg =p AU(ANB)=A Absorption laws
pA(pVqg =p AN(AUB)=A

pV-p=T AUAd=U Negation laws /
pAN-p=F ANA=0 Complement laws

Table 1: Set Identities.
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AAB = (A\B)U(B\A) Definition of Symmetric Difference

(ANB)U(BNA) Definition of Set Subtraction

=(ANB)UB)N((ANB)UA) Distributive Law

=((AUuB)N(BUB))N((ANA)u (BN A)) Distributive Law

=((AuB)NU)N((AUA)N(BUA)) Complement Law

=(AuB)NU)N(UN(BUA)) Complement Law

=(AUuB)N(UN(BUA) Identity Law

=(AUB)N(BUA) Identity Law

=(AUB)N(ANDB) DeMorgan’s Law

=(AUB)\ (AN B) Definition of Set Subtraction

We have thus demonstrated the equality of these sets.

2.1.1 Suggested Homework

Rosen 2.2: 5-10, 11-17, 18*, 19-20, 32-39, 40*, 41*, 46*, 47-51, 53, 57, 59-60.
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3 Friday, February 6

3.1 Set Leftovers

Def: A and B are disjoint if AN B = @.

Generalized Unions and Intersections:

JAi=404,0450 - U4,
=1

ﬂAizAl NAsNAsN---N A,y

i=1
Def: A subset R of A x B is called a relation between A and B. The ordered pairs in R describe pairs (a, b)
that are related in some way.
Show how to visualize A X B and a relation using a bipartite graph.

Ex: Let A= {1,...,n} and B = P(A). Let R = {(S,T) : $,T € P(A),S C T}. Then R C P(A) x P(A)
and the “relation” of a pair (S,T) € R is “S is a subset of T.”

Not all relations are as nicely defined as the one above.

3.2 Rosen 2.3 — Functions

Reading: Rosen 2.3, LLM 4.3, Ducks 3.1, 3.2.

Def: Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each
element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a
of A. If f is a function from A to B, we write f : A — B.

Def: domain, codomain, image (f(a) =b), preimage, range, maps A to B.

Draw pictures of the above things.

Examples:
Z5Q fla)=
f:7Z—Q, fa—m.
fZ—-2Z, f(a)=2a
[ R=R, f(x)=2%

fiAabcy = {1,234}, f(a) =1,f(b) =2, f(c) = 1.

Ex: With the finite set examples, discuss how functions create relations, but not all relations create functions.
Def: If f: A— Band S C A, let f(S) ={f(a):a € S}, and call f(S) the range of S.
Def: integer-valued, real-valued.

Def: Let fi, fo : R = R. (fi + f2)(2) = fi(z) + fo(x), (fif2)(x) = fi(x)f2(2).
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3.2.1 Types of Functions

Def: injective (or one-to-one), surjective (or onto), and bijective.

Let f: A — B be a function.

To show that f is injective: Prove Vax,y € A(f(x) = f(y) = =z =vy).

To show that f is NOT injective: Prove 3x,y € A(f(z) = f(y) Az # y).
To show that f is surjective: Prove Vy € Bz € A(f(x) = y).

To show that f is NOT surjective: Prove 3y € BVx € A(f(z) # y).

Def: Let f be a bijective function from A to B. The inverse function of f is the function, denoted f~!, that
assigns to an element b € B the unique element a € A such that f(a) = b, i.e. f~1(b) = a when f(a) =b.

A bijective function is invertible, as we can construct the inverse. A function f : A — B that is not bijective
is not invertible, since one of two things fails:

e f is not injective, so f(a) = f(a’) = b for two elements a,a’ € A where a # a’. Then f~1(b) cannot be
both a and a'.

e f is not surjective, so for some element b € B there is no element a € A where f(a) = b, so f~1(b)
cannot be any element of A.

Def: If f : A — B and g : B — C are functions, then the composition of g and f, denoted g o f, is the
function go f : A — C where (go f)(a) = g(f(a)) for all a € A.

Draw a picture.

Note: If f is a bijection, then f~tof : A — Ais the identity map: f~'of(a) = a. Note that fof~: B — B.

3.2.2 Plots of Functions

A drawing of a real-valued function on the (z,y)-plane is a plot of the function. (Not a graph because that
means something DIFFERENT in this class!)

Ex: f:7 — Z: f(z) = 22,

Ex: f:R—>R: f(z) = |z].

Ex: f:R—>R: f(x)=[z].

Ex: f:R—=R: f(x)=[z].

Def: The factorial function *! : N — Z%, denoted by n!, is the function n(n — 1)(n — 2)---(3)(2)(1) or
[17,i. (Note: The empty product is considered to be multiplied by 1, so 0! = 1. There is a reason for this!)

3.2.3 Suggested Homework

Rosen 2.3: 1-3, 10-15, 20-25, 26*, 28-29, 33-37, 42-44, 47, T7.



