
COM S 330 — Lecture Notes — Week of Feb 2–6

1 Monday, February 2

1.1 Rosen 2.1 – Sets

Reading: Rosen 2.1. LLM 4.1. Ducks 2.1, 2.2.

Def: A set is an unordered collection of objects, called elements or members of the set. A set is said to
contain its elements. We write a ∈ A to denote that a is an element of the set A. We write a /∈ A to denote
that a is not an element of the set A.

A set can be described by listing its entries between curly braces: A = {a, b, c, d} (the roster method).

A set can be defined using propositional logic, where the set contains all elements that satisfy the propositional
function: A = {x : P (x) is true }. (Some use colon, some use vertical bar. Both are accepted, but I like the
colon.)

Ex:

Def: N, Z, Z+, Q, R, R+, C.

Def: Intervals [a, b], [a, b), (a, b], (a, b).

Ex: {N,Q,Z,R,C}
Def: Set are equal if they contain the same elements.

Def: Empty set ∅, singleton set.

Note: We say elements are “objects” without defining “object.” This is on purpose: a formal definition is
outside the scope of this class. In the current definition, (and almost all definitions of set theory) we can
find paradoxes.

1.2 Subsets

Def: Let A and B be sets. A is a subset of B, denoted A ⊆ B, if every element of A is an element of B. (If
A and B are also not equal, then we use A ⊂ B.)

Ex: A = {1, 2, 3}, B = {1, 2, 3, 4, 5}, C = {1, 3, 5}.
To show that A is a subset of B, you demonstrate ∀x, (x ∈ A)→ (x ∈ B).

To show that A is not a subset of B, you demonstrate ∃x, (x ∈ A) ∧ (x /∈ B).

Thm: For every set S, ∅ ⊆ S and S ⊆ S.

To show that A and B are equal, you demonstrate A ⊆ B and B ⊆ A.

Def: Let S be a set. If there are exactly n distinct elements of S, then S is a finite set and n is the cardinality
of S, denoted |S|. (If S has an infinite number of elements, then we say |S| =∞.)

Def: If S is a set, then the power set of S, denoted P(S) or 2S , is the set of subsets of S.

1.3 Cartesian Products

Def: An ordered n-tuple (a1, a2, . . . , an) is the ordered collection that has a1 as its first element, a2 as its
second element, and so on until an the nth element.

2-tuples are called ordered pairs.

Def: If A and B are sets, then the cartesian product of A and B, denoted A×B, is the set of ordered pairs
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(a, b) where the first element a is an element of A and the second element b is an element of B.

A×B = {(a, b) : a ∈ A ∧ b ∈ B}.

Def: If A1, . . . , An are sets, then the cartesian product of A1, . . . , An, denoted A1×A2×· · ·×An or
∏n

i=1 Ai,
is the set of n-tuples (a1, a2, . . . , an) where for all i with 1 ≤ i ≤ n, the ith element ai is an element of Ai.

n∏
i=1

Ai = A1 ×A2 × · ×An = {(a1, a2, . . . , an) : ∀i ∈ {1, . . . , n}ai ∈ Ai}.

1.3.1 Suggested Homework

Rosen 2.1: 1,3–8,9–11, 14–17, 18–24, 25∗, 26–30, 35–37, 46∗, 47∗.
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2 Wednesday, February 4

2.1 Rosen 2.2 – Set Operations

Reading: Rosen 2.2, LLM 4.1, 4.4, Ducks 2.2.4.

Def: union A∪B, intersection A∩B, disjoint (A∩B = ∅), difference (A−B or A\B) also called complement
of B with respect to A, complement (A = U \A) [Redefine difference as A\B = A∩B], symmetric difference
(A⊕B = A4B = (A \B) ∪ (B \A))

Thm: Let A and B be subsets of U . A4B = (A ∪B) \ (A ∩B).

Proof. Let A and B be subsets of U . The set A4B consists of elements a ∈ U such that (a ∈ A and
a /∈ B) or (a ∈ B and a /∈ A). The set (A ∪ B) \ (A ∩ B) consists of elements a ∈ U such that (a ∈ A
or a ∈ B) and not (a ∈ A and a ∈ B). To show equality, we must show A4B ⊆ (A ∪ B) \ (A ∩ B) and
(A ∪B) \ (A ∩B) ⊆ A4B.

(A4B ⊆ (A∪B) \ (A∩B)) Let a ∈ A4B. Since (a ∈ A and a /∈ B) or (a ∈ B and a /∈ A), we consider two
cases. If a ∈ A and a /∈ B, then a is in A ∪B and a is not in A ∩B. Therefore, a is in (A ∪B) \ (A ∩B). If
a ∈ B and a /∈ A, then a is in A ∪B and a is not in A ∩B. Therefore, a is in (A ∪B) \ (A ∩B).

((A ∪B) \ (A ∩B) ⊆ A4B) Let a ∈ (A ∪B) \ (A ∩B). Since a ∈ (A ∪B), we have that a ∈ A or a ∈ B. If
a ∈ A, then since a /∈ (A ∩ B), we have a /∈ B. Therefore, a ∈ A4B. If a ∈ B, then since a /∈ (A ∩ B), we
have a /∈ A. Therefore, a ∈ A4B.

This would be easier if we have some helpful tools. We will prove it again later.

Note: Suppose the universe U is a finite set. Then list the elements of U as a1, a2, . . . , an where n = |U |.
For each set A ⊆ U , we can associate A with a binary string xA = (x1, . . . , xn) where xi = 1 if and only if
ai ∈ A. So, this bit string encodes the truth values of the n propositions pi = “ai ∈ A′′.

And/Intersection Or/Union Xor/Symmetric Difference

Sets A ∩B A ∪B A4B

Logic (a ∈ A ∩B)↔ (a ∈ A ∧ a ∈ B) (a ∈ A ∪B)↔ (a ∈ A ∨ a ∈ B) (a ∈ A4B)↔ (a ∈ A⊕ a ∈ B)

Bit Strings xA∩B = xA ∧ xB xA∪B = xA ∨ xB xA4B = xA ⊕ xB

See Table ?? for a list of set identities.

Thm: Let A and B be subsets of U . A4B = (A ∪B) \ (A ∩B).

Proof. We will use set identities.
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Table: Logical Equivalences and Set Identities

Logical Equivalence Set Identity Name

p ∧T ≡ p A ∩ U = A Identity laws

p ∨ F ≡ p A ∪∅ = A

p ∨T ≡ T A ∪ U = U Domination laws

p ∧ F ≡ F A ∩∅ = ∅
p ∨ p ≡ p A ∪A = A Idempotent laws

p ∧ p ≡ p A ∩A = A

¬(¬p) ≡ p
(
A
) Double negation law /

Complementation law

p ∨ q ≡ q ∨ p A ∪B = B ∪A Commutative laws

p ∧ q ≡ q ∧ p A ∩B = B ∩A

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) (A ∪B) ∪ C = A ∪ (B ∪ C) Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (A ∩B) ∩ C = A ∩ (B ∩ C)

p∨(q∧r) ≡ (p∨q)∧(p∨r) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Distributive laws

p∧(q∨r) ≡ (p∧q)∨(p∧r) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

¬(p ∧ q) ≡ ¬p ∨ ¬q A ∩B = A ∪B De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q A ∪B = A ∩B

p ∨ (p ∧ q) ≡ p A ∪ (A ∩B) = A Absorption laws

p ∧ (p ∨ q) ≡ p A ∩ (A ∪B) = A

p ∨ ¬p ≡ T A ∪A = U Negation laws /

p ∧ ¬p ≡ F A ∩A = ∅ Complement laws

Table 1: Set Identities.
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A4B = (A \B) ∪ (B \A) Definition of Symmetric Difference

= (A ∩B) ∪ (B ∩A) Definition of Set Subtraction

= ((A ∩B) ∪B) ∩ ((A ∩B) ∪A) Distributive Law

= ((A ∪B) ∩ (B ∪B)) ∩ ((A ∩A) ∪ (B ∩A)) Distributive Law

= ((A ∪B) ∩ U) ∩ ((A ∪A) ∩ (B ∪A)) Complement Law

= ((A ∪B) ∩ U) ∩ (U ∩ (B ∪A)) Complement Law

= (A ∪B) ∩ (U ∩ (B ∪A)) Identity Law

= (A ∪B) ∩ (B ∪A) Identity Law

= (A ∪B) ∩ (A ∩B) DeMorgan’s Law

= (A ∪B) \ (A ∩B) Definition of Set Subtraction

We have thus demonstrated the equality of these sets.

2.1.1 Suggested Homework

Rosen 2.2: 5–10, 11–17, 18∗, 19–20, 32–39, 40∗, 41∗, 46∗, 47–51, 53, 57, 59–60.
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3 Friday, February 6

3.1 Set Leftovers

Def: A and B are disjoint if A ∩B = ∅.

Generalized Unions and Intersections:

n⋃
i=1

Ai = A1 ∪A2 ∪A3 ∪ · · · ∪An.

n⋂
i=1

Ai = A1 ∩A2 ∩A3 ∩ · · · ∩An.

Def: A subset R of A×B is called a relation between A and B. The ordered pairs in R describe pairs (a, b)
that are related in some way.

Show how to visualize A×B and a relation using a bipartite graph.

Ex: Let A = {1, . . . , n} and B = P(A). Let R = {(S, T ) : S, T ∈ P(A), S ⊆ T}. Then R ⊆ P(A) × P(A)
and the “relation” of a pair (S, T ) ∈ R is “S is a subset of T .”

Not all relations are as nicely defined as the one above.

3.2 Rosen 2.3 – Functions

Reading: Rosen 2.3, LLM 4.3, Ducks 3.1, 3.2.

Def: Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each
element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a
of A. If f is a function from A to B, we write f : A→ B.

Def: domain, codomain, image (f(a) = b), preimage, range, maps A to B.

Draw pictures of the above things.

Examples:

f : Z→ Q, f(a) =
1

1 + |a|
.

f : Z→ Z, f(a) = 2a

f : R→ R, f(x) = x2.

f : {a, b, c} → {1, 2, 3, 4}, f(a) = 1, f(b) = 2, f(c) = 1.

Ex: With the finite set examples, discuss how functions create relations, but not all relations create functions.

Def: If f : A→ B and S ⊆ A, let f(S) = {f(a) : a ∈ S}, and call f(S) the range of S.

Def: integer-valued, real-valued.

Def: Let f1, f2 : R→ R. (f1 + f2)(x) = f1(x) + f2(x), (f1f2)(x) = f1(x)f2(x).

6



COM S 330 — Lecture Notes — Week of Feb 2–6

3.2.1 Types of Functions

Def: injective (or one-to-one), surjective (or onto), and bijective.

Let f : A→ B be a function.

To show that f is injective: Prove ∀x, y ∈ A(f(x) = f(y)→ x = y).

To show that f is NOT injective: Prove ∃x, y ∈ A(f(x) = f(y) ∧ x 6= y).

To show that f is surjective: Prove ∀y ∈ B∃x ∈ A(f(x) = y).

To show that f is NOT surjective: Prove ∃y ∈ B∀x ∈ A(f(x) 6= y).

Def: Let f be a bijective function from A to B. The inverse function of f is the function, denoted f−1, that
assigns to an element b ∈ B the unique element a ∈ A such that f(a) = b, i.e. f−1(b) = a when f(a) = b.

A bijective function is invertible, as we can construct the inverse. A function f : A→ B that is not bijective
is not invertible, since one of two things fails:

• f is not injective, so f(a) = f(a′) = b for two elements a, a′ ∈ A where a 6= a′. Then f−1(b) cannot be
both a and a′.

• f is not surjective, so for some element b ∈ B there is no element a ∈ A where f(a) = b, so f−1(b)
cannot be any element of A.

Def: If f : A → B and g : B → C are functions, then the composition of g and f , denoted g ◦ f , is the
function g ◦ f : A→ C where (g ◦ f)(a) = g(f(a)) for all a ∈ A.

Draw a picture.

Note: If f is a bijection, then f−1◦f : A→ A is the identity map: f−1◦f(a) = a. Note that f◦f−1 : B → B.

3.2.2 Plots of Functions

A drawing of a real-valued function on the (x, y)-plane is a plot of the function. (Not a graph because that
means something DIFFERENT in this class!)

Ex: f : Z→ Z: f(x) = x2.

Ex: f : R→ R: f(x) = bxc.
Ex: f : R→ R: f(x) = dxe.
Ex: f : R→ R: f(x) = [x].

Def: The factorial function ∗! : N → Z+, denoted by n!, is the function n(n − 1)(n − 2) · · · (3)(2)(1) or∏n
i=1 i. (Note: The empty product is considered to be multiplied by 1, so 0! = 1. There is a reason for this!)

3.2.3 Suggested Homework

Rosen 2.3: 1–3, 10–15, 20–25, 26∗, 28–29, 33–37, 42–44, 47, 77.
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