
COM S 330 — Lecture Notes — Week of Feb 9–13

1 Monday, February 9

1.1 Rosen 2.4 – Sequences

Reading: Rosen 2.4. LLM 4.2. Ducks 8.1, 8.2,

Def: A sequence is a function from a (usually infinite) subset of the integers (usually N = {0, 1, 2, 3, . . . } or
Z+ = {1, 2, 3, 4, . . . }) to a set S. If a : D → S is a sequence (D ⊆ Z), then we use the notation an to denote
the image of the integer n under the function a. We call an a term of the sequence. We can use the notation
(an)∞n=0 to denote a sequence (a0, a1, a2, . . . ) [Think of it as an infinite tuple].

Ex: an = 1
n , bn = n2, cn = sin

(
1
n

)
, dn =

(
1 + 1

n

)n
, µn = |{p : 2 ≤ p ≤ n, p is prime }|.

There are a few common sequences that are good to know.

Def: Let a and r be real numbers. The geometric sequence defined by a and r is the sequence

a, ar, ar2, ar3, . . . , arn, . . .

where the nth term is arn (n ∈ N).

Def: Let a and d be real numbers. The arithmetic sequence defined by a and d is the sequence

a, a+ d, a+ 2d, a+ 3d, . . . , a+ nd, . . .

where the nth term is a+ nd (n ∈ N).

(The term geometric means “multiply” while arithmetic means “add.”)

Note: If b = log a and d = log r, then log(arn) = log a+ n log r = b+ nd. Thus, the arithmetic sequence is
a log version of the geometric sequence. Alternatively, the geometric sequence is the exponential version of
the arithmetic sequence.

Def: A function from a finite set of integers (say {1, . . . , n}) to a set S is called a list or string. We use
sequence notation to denote the values as a1, . . . , an, but since the list is finite, it is very different from a
sequence.

1.1.1 Recurrence Relations

Def: A recurrence relation for the sequence (an)∞n=0 is an equation that expresses an in terms of one or more
of the previous terms of the sequence, namely a0, . . . , an−1 for all integer n ≥ n0, where n0 is a nonnegative
integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relations.
(A recurrence relation is said to recursively define a sequence.)

Natural Numbers: a0 = 0. For n > 1, an = an−1 + 1. (Solution: an = n.)

Def: The values of the sequence a0, . . . , an0−1 are called the initial conditions, as they define the start of
the sequence by

Fibonacci Sequence: F0 = 0, F1 = 1. For n > 2, Fn = Fn−1 + Fn−2.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

(Solution: Fn =
√
5
5

[(
1+
√
5

2

)n
−
(

1−
√
5

2

)n]
. We may talk about why this is true later. Not now!)

Lucas Sequence: L0 = 2, L1 = 1. For n > 2, Ln = Ln−1 + Ln−2.

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .
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(Solution: Ln =
(

1+
√
5

2

)n
+
(

1−
√
5

2

)n
. We may talk about why this is true later. Not now!)

Note: When we say “solution” above, we really mean closed form, where we describe the nth term precisely

Ex: Find a closed form for the following sequences:

1. a0 = 1; for n ≥ 1, an = an−1 + 5.

2. b0 = 3; for n ≥ 1, bn = 2bn−1.

3. c0 = 2; for n ≥ 1, cn = 1
2cn−1 + 1.

Forward Substitution: Start by writing out all of the terms and see if you notice a pattern. For the
examples above, we have the following lists of initial terms:

(an)∞n=0 = (1, 6, 11, 16, 21, . . . ), (bn)∞n=0 = (3, 6, 12, 24, 48, . . . ), (cn)∞n=0 = (2, 2, 2, 2, 2, . . . ).

Notice that from this method we easily see that cn = 2 for all n ≥ 0. You may be able to deduce closed
forms for an and bn as well.

Backward Substitution: Start with n as a variable and start plugging in terms. Extend this to the “full”
recursion and see what happens. For the examples above, we have the following lists of initial terms:

an = an−1 + 5

= (an−2 + 5) + 5

= ((an−3 + 5) + 5) + 5

...

= ((· · · ((a0 +5) + 5) + · · · ) + 5︸ ︷︷ ︸
n terms

= a0 + 5n = 5n+ 1.

bn = 2bn−1

= 2(2bn−2)

= 2(2(2bn−3))

...

= 2(2(· · · (2︸ ︷︷ ︸
n terms

b0) · · · ))

= b02n = 3 · 2n

In a more complicated process of backward substitution, we can try it on our sequence (cn)∞n=0.

cn =
1

2
cn−1 + 1

=
1

2

(
1

2
cn−1 + 1

)
+ 1

=
1

2

(
1

2

(
1

2
cn−2 + 1

)
+ 1

)
+ 1

= . . .

This is getting complicated quickly! However, let’s distribute all of our terms in order to make better sense
of everything!
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cn =
1

2
cn−1 + 1 =

1

2
cn−1 + 1

=
1

2

(
1

2
cn−1 + 1

)
+ 1 =

1

4
cn−2 +

1

2
+ 1

=
1

2

(
1

2

(
1

2
cn−2 + 1

)
+ 1

)
+ 1 =

1

8
cn−3 +

1

4
+

1

2
+ 1

= . . .

=

(
1

2

)k

cn−k +

k−1∑
i=0

2i

= . . .

=

(
1

2

)n

c0 +

n−1∑
i=0

2i

=

(
1

2

)n−1

+

n−1∑
i=0

2i.

This is a very difficult to compute closed form! This is not nearly as simple as cn = 2. However, what we
need to do is apply a summation identity1:

For x 6= 1,

k∑
i=0

xi =
xk+1 − 1

x− 1
.

Using the above identity with x = 1
2 we see that

cn =

(
1

2

)n−1

+

n−1∑
i=0

2i

=

(
1

2

)n−1

+

(
1
2

)n − 1
1
2 − 1

=

(
1

2

)n−1

+

(
1
2

)n − 1

− 1
2

=

(
1

2

)n−1

− 2

((
1

2

)n

− 1

)
=

(
1

2

)n−1

−
(

1

2

)n−1

+ 2

= 2.

1In class, I made a comment about how I remember this formula for x = 2:
∑k

i=0 2
i is the binary number 111 · · · 1︸ ︷︷ ︸

k+1 digits

and

111 · · · 1︸ ︷︷ ︸
k+1 digits

= 1000 · · · 0︸ ︷︷ ︸
k+1 digits

−1. So
∑k

i=0 2
i = 2k+1 − 1 = 2k+1−1

2−1
. This extends to larger integers, for instance x = 3:

∑k
i=0 3

i

is the ternary (base-3) number 111 · · · 1︸ ︷︷ ︸
k+1 digits

and 222 · · · 2︸ ︷︷ ︸
k+1 digits

= 1000 · · · 0︸ ︷︷ ︸
k+1 digits

−1, so
∑k

i=0(3 − 1)3i = 3k+1−1
3−1

. In general, the base-b

number given by k + 1 digits where each digit is value b − 1, adding one gets a carry-bit for each term until it is equal to the

power bk+1, hence
[∑k

i=0(b− 1)bi
]
+ 1 = bk+1 and therefore

∑k
i=0 b

i = bk+1−1
b−1

.
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1.1.2 Common Sequences

There are many common sequences that you should be aware of (but do not need to have memorized).
However, these sequences will appear more and more frequently throughout the course and can make finding
closed forms of sequences much easier!

an Recurrence Relation a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

n an = an−1 + 1 0 1 2 3 4 5 6 7 8 9 10

n2 an = an−1 + 2n− 1 0 1 4 9 16 25 36 49 64 81 100

n3 an = an−1 + 3n2 − 3n+ 1 0 1 8 27 64 126 216 343 512 729 1000

2n an = 2an−1 1 2 4 8 16 32 64 128 256 512 1024

3n an = 3an−1 1 3 9 27 81 243 729 2187 6561 19683 59049

n! an = nan−1 1 1 2 6 24 120 720 5040 40320 362880 3628800

Fn Fn = Fn−1 + Fn−2 0 1 1 2 3 5 8 13 21 34 55

Ln Ln = Ln−1 + Ln−2 2 1 3 4 7 11 18 29 47 76 123

1.1.3 OEIS

When doing your homework, or just having fun with sequences, you can use the Online Encyclopedia
of Integer Seq uences (http://oeis.org/) to discover what sequences represent, how they have different
representations.

1.1.4 Suggested Homework

Rosen 2.4: 1–4, 9–17, 25–26.

4
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2 Wednesday, February 9

2.1 Rosen 4.1 – Mathematical Induction

Reading: Rosen 4.1. LLM 4.2. Ducks 8.2, 8.3

2.1.1 Standard Induction

The Principal of Mathematical Induction: Let (P (n))∞n=0 be a sequence of propositions. To prove
∀nP (n), it suffices to demonstrate the following:

1. P (0) is true.

2. If P (n) is true for some n ≥ 0, then P (n+ 1) is true.

Thm: Let (an)∞n=0 be the sequence defined as a0 = a, and for n ≥ 1 an = an−1 + d. Then an = dn+ a.

Proof. Case n = 0: a0 = a = d(0) + a.

(Induction Hypothesis) Assume that an = dn+ a for some n ≥ 0.

Case n+ 1: an+1 = an + d = dn+ a+ d︸ ︷︷ ︸
by IH

= d(n+ 1) + a.

Thm: Let (bn)∞n=0 be the sequence defined as b0 = a, and for n ≥ 1 bn = rbn−1. Then bn = arn.

Proof. Case n = 0: b0 = a = ar0.

(Induction Hypothesis) Assume that bn = arn for some n ≥ 0.

Case n+ 1: bn+1 = rbn = r(arn)︸ ︷︷ ︸
by IH

= arn+1.

Thm: Let (cn)∞n=0 be the sequence defined as c0 = a, and for n ≥ 1 cn = rcn−1 + d. Then cn =

arn +
(

rn−1
r−1

)
d.

Proof. Case n = 0: c0 = a = a(1) + 0 = ar0 +
(

r0−1
r−1

)
d.

(Induction Hypothesis) Assume that cn = arn +
(

rn−1
r−1

)
d for some n ≥ 0.

Case n+ 1: Consider cn+1.
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cn+1 = rcn + d

= r

(
arn +

(
rn − 1

r − 1

)
d

)
+ d (By Induction Hypothesis)

= arn+1 +

(
rn − 1

r − 1

)
rd+ d

= arn+1 +
d

r − 1
[(rn − 1)r + (r − 1)]

= arn+1 +
d

r − 1

[
rn+1 − r + r − 1

]
= arn+1 +

rn+1 − 1

r − 1
d.

Thm: Let k ≥ 0 be an integer and x 6= 1. Prove that
∑k

i=0 x
i = xk+1−1

x−1 .

Proof. Case k = 0:
∑0

i=0 x
i = x0 = 1 = x1−1

x−1 .

(Induction Hypothesis) Assume that
∑k

i=0 x
i = xk+1−1

x−1 .

Case k + 1:

k+1∑
i=0

xi = xk+1 +

k∑
i=0

xi

= xk+1 +
xk+1 − 1

x− 1
(By Induction hypothesis)

=
xk+1(x− 1)

x− 1
+
xk+1 − 1

x− 1

=
xk+2 − xk+1 + xk+1 − 1

x− 1

=
xk+2 − 1

x− 1
.

Therefore
∑k+1

i=0 x
i = xk+2−1

x−1 .

Many of the following closed forms can be proven using induction:

Sum Closed Form∑k
i=0 1 k + 1∑k
i=0 i

k(k+1)
2∑k

i=0 i
2 k(k+1)(2k+1)

6∑k
i=0 i

3 k2(k+1)2

4∑k
i=0 ar

i ark+1−a
r−1 (r 6= 1)∑∞

i=0 x
i, |x| < 1 1

1−x∑∞
i=0 kx

k−1, |x| < 1 1
(1−x)2

Def: An angle tile is a tile consisting of three squares not in a line (can cover positions (1, 1), (1, 2), and
(2, 1).
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Thm: Let n ≥ 1 and let Cn be a 2n × 2n chessboard with one square missing. Cn can be tiled using angle
pieces.

Proof. Case n = 1: All squares of the 2× 2 chessboard are corners. Once a corner is missing, the remaining
squares form an angle tile.

(Induction Hypothesis) Assume that Cn can be tiled using angle pieces.

Case n+1: The 2n+1×2n+1 chessboard can be split into four “quadrants” that are each a 2n×2n chessboard,
by cutting the board in half in each direction. The missing square of Cn+1 is in exactly one of the quadrants.
Place an angle tile such that exactly one square of the tile is in each of the quadrants without a missing
square. Now the squares of Cn+1 that are not covered by the angle tile form 2n × 2n chessboards with one
missing square. Therefore, by the induction hypothesis there exists a tiling of these quadrants using angle
tiles, completing a tiling of Cn+1.

2.1.2 A NON Proof!

Thm: Every horse is of the same color.

Proof. We will use induction to prove the following proposition: for n ≥ 1, P (n) is the proposition “for every
collection of n horses, every horse has the same color.”

Case n = 1: Consider a collection of 1 horse. This horse has the same color as itself.

(Induction Hypothesis) Assume for some n ≥ 1, P (n) is true.

Case n+1: Let S be a collection of n+1 horses. List the horses as h1, . . . , hn+1. The collection {h1, . . . , hn}
is a collection of n horses, and the collection {h2, . . . , hn+1} is a collection of n horses. By the induction
hypothesis, the colors of h1, . . . , hn are the same, and the colors of h2, . . . , hn+1 are the same. Thus, hn+1

has the same color as hn, which is the same color as h1, . . . , hn−2.

What is wrong with that proof?

2.1.3 Strong Induction

The Principal of (Strong) Mathematical Induction: Let (P (n))∞n=0 be a sequence of propositions. To
prove ∀nP (n), it suffices to demonstrate the following:

1. P (0) is true.

2. If P (m) is true for 0 ≤ m < n, then P (n) is true.

Thm: Every natural number n ∈ N is either even or odd.

Proof. Case n = 0: 0 = 2 · 0, so 0 is even.

Case n = 1: 1 = 2 · 0 + 1, so 1 is odd.

Now for some N ≥ 2, assume that for all natural numbers n < N , n is even or odd.

Case N : N − 2 is either even or odd. If N − 2 is even, then there exists an integer k such that N − 2 = 2k
and N = 2(k + 1), so N is even. If N − 2 is odd, then there exists an integer k such that N − 2 = 2k + 1
and N = 2(k + 1) + 1, so N is odd.

Thm: There are Fn+1 ways to tile the 2× n chessboard with dominoes.

7
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Proof. Let dn be the number of ways to tile the 2× n chessboard. We will prove “dn = Fn+1” for all n ≥ 0.

Case n = 0: There is 1 way to tile the 2× 0 chessboard: no dominoes! d0 = 1 = F1.

Case n = 1: There is 1 way to tile the 2× 1 chessboard: one vertical domino! d1 = 1 = F2.

Now let N > 1 and assume that for all n < N , dn = Fn+1.

Case N : Consider a domino tiling, and consider the domino covering the (1, 1) position. This tile is either
horizontal or vertical.

If the domino is horizontal, then there is another horizontal domino covering the (2, 1) position, and these
dominoes cover the (1, 1), (1, 2), (2, 1) and (2, 2) positions. Since there are dn−2 ways to tile the rest of the
positions, there are dn−2 domino tilings of the 2×n chessboard with a horizontal domino covering the (1, 1)
position.

If the domino is vertical, then it also covers the (2, 1) position. Since there are dn−1 ways to tile the rest
of the positions, there are dn−1 domino tilings of the 2× n chessboard with a vertical domino covering the
(1, 1) position.

Therefore, there are dn−2 + dn−1 ways to tile the 2 × n chessboard, so dn = dn−2 + dn−1 = Fn−1 + Fn =
Fn+1.

2.1.4 Suggested Homework

Rosen 2.4: 27∗, 28∗, 29–34, 35∗, 36–37, 44.

Rosen 4.1:

8
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3 Extra Strong Induction Example

The L-shaped Tetris piece (or tetromino, see the Wikipedia page) consists of four squares: three of which
are in a line and a fourth attached to one end of that line. See the figure below for all of the arrangements
of the L-shaped Tetris piece (or L-piece).

1/29/2015 tetrominos-L.svg

file:///Users/dstolee/Box%20Sync/Teaching/2015/COMS330/homework/figures/tetrominos-L.svg 1/1

Thm: If k is odd, then the 3× 4k chessboard cannot be tiled using L-pieces.

Proof. We will use strong induction to prove that if k ≥ 1 is odd, then the 3× 4k chessboard cannot be tiled
using L-pieces. We first make a claim about any tiling:

Claim: Any tiling of the 3 × 4k chessboard using L-pieces must use an L-piece covering all three rows on
the left-most and right-most edges.

Proof of Claim. Suppose there is a tiling that does not use an L-piece on an edge of length three (without
loss of generality, we use the left edge). The top-left corner must be covered by some L-piece. Consider the
possible placements, by how many squares of the L-piece are on the left edge.

Case 1: Exactly one square of the L-piece is on the left edge. In this case, the L-piece covers the three
squares in the second column, leaving two squares on the left edge that cannot be covered by an L-piece!

Case 1. Case 2.

Case 2: Exactly two squares of the L-piece are on the left edge. There are two ways for the L-piece to
cover two squares on the left edge. However, since the bottom-left corner must be covered by an L-piece,
the top-left corner piece cannot cover three squares in the middle row. So, the top-left corner is covered by
an L-piece that has three squares on the top edge. Finally, the bottom-left corner must be covered by an
L-piece and the only way this can be placed is with three squares on the bottom edge. This leaves the square
in the (2, 2) position surrounded by squares already covered, so no L-piece can cover this square!

Case k = 1: By the claim above, any tiling of the 3 × 4 chessboard must include an L-piece covering three
squares of the left edge. Also, the tiling must include an L-piece covering three squares of the right edge.
These L-pieces are either arranged such that they cover adjacent squares, or do not. When they cover
adjacent squares, the four squares not covered by these two pieces form a 2 × 2 chessboard, which cannot
fit an L-piece. When they do not cover adjacent squares, the four squares not covered by these two pieces
form a 3× 2 chessboard with two opposite corners missing, which cannot fit an L-piece. Therefore, there is
no tiling of the 3× 4 chessboard.

Covering Adjacent Squares Not Covering Adjacent Squares

9
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(Induction Hypothesis) Suppose that the statement is true for all odd values of k with k < K for some
K > 1.

Case K: Suppose that we have a tiling of the 3 × 4K chessboard using L-pieces. If an L-piece is placed
vertically so it covers all three rows of the chessboard, then the tiling of the 3 × 4K chessboard partitions
into tilings of a 3×m chessboard and a 3× (4K−m) chessboard, for some m. Since L-pieces cover 4 squares
each, these tilings cover a multiple of 4 squares, so 3m is a multiple of 4 and therefore m = 4n for some
integer n. Finally, this implies that the 3× 4n chessboard and the 3× 4(K − n) chessboard are tiled using
L-pieces. Since K is odd, one of n or K − n is odd. Suppose without loss of generality, n is odd, but by the
induction hypothesis the 3× 4n chessboard cannot be tiled using L-pieces.

Therefore, no L-piece is placed vertically to cover all three rows of the chessboard, except for the left-most
edge and the right-most edge.

We now investigate our tiling, starting on the left edge. As claimed, all three squares on this edge are
covered by the same L-piece. Since the square in the (2,2) position must be covered by an L-piece, the only
arrangement of an L-piece covering this square without immediately making a tiling impossible is to have
that L-piece cover the other open position in the second column. Therefore, we definitely have a tiling that
looks like the below (or its vertical mirror).

We now consider how the (3,3) position is covered. Note that if it is covered by an L-piece without also
covering the (2,3) position, the (2,3) position cannot be covered by an L-piece. Thus, both the (3,3) and
(3,2) positions are covered by the same L-piece. There are two options to cover these two by a single L-piece,
and they each “force” another L-piece, as in the pictures below.

Observe that both options cover the same set of squares, so we can take either option. We now consider how
the (1,5) position is covered, and there is exactly one option.

Given this set of covered squares, we can now consider the (3,7) position. This cannot be covered by
an L-piece that covers all three rows (as below) because that would create a vertical L-piece, which we
demonstrated does not exist.

Bad example!

10
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Therefore, the L-piece covering the (3,7) position covers three squares on the bottom edge.

This forces the (2,8) position to be covered by an L-piece that has three squares on the top edge.

Now consider how the (2,10) position is covered by an L-piece. If it is covered by an L-piece that does not
have three squares on the bottom row, observe that the tiling cannot continue in one or two more placements
of L-pieces [I know this is sketchy, but its’ getting late]. Thus, the (2,10) position is covered by an L-piece
covering three squares on the bottom row, as in the picture below.

Now, see the two thick black lines. If we remove all of the L-pieces between them and take the two L-pieces
on the left, flip them vertically, they fit nicely with the rest of the tiling to the right. See the picture below.

Therefore, our tiling of the 3× 4K chessboard gives us a way to tile the 3× 4(K − 2) chessboard. However,
our induction hypothesis claims this is impossible, so we have a contradiction!
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