
COM S 330 — Lecture Notes — Week of Feb 16–20

1 Monday, February 16

Reading: Rosen 5.1, 5.2. LLM 5.1, 5.2, 5.3. Ducks 8.2, 8.3

1.1 Rosen 5.1 – Mathematical Induction

1.1.1 More Examples

Here are a few examples of statements you can prove using induction.

Thm: Every natural number n ∈ N is either even or odd.

Proof. Case n = 0: 0 = 2 · 0, so 0 is even.

(Induction Hypothesis) Now suppose for some integer n ≥ 0, n is even or n is odd.

Case n + 1: By the induction hypothesis, n is even or n is odd. If n is even, then there exists an integer k
such that n = 2k and n + 1 = 2k + 1, so n + 1 is odd. If n is odd, then there exists an integer k such that
n = 2k + 1 and n+ 1 = 2k + 1 + 1 = 2(k + 1), so n+ 1 is even.

Thm: Let a0 = 1 and for n ≥ 1 let an = 5an−1 + 1. For all n ≥ 2, an < 6n.

Note: Since a0 = 1 = 60 and a1 = 6 = 61, the statement an < 6n is false for n ∈ {0, 1}. So, our “base case”
is actually n = 2.

Proof. Case n = 2: a2 = 5(6) + 1 = 31 < 36 = 62. Therefore a2 < 62.

(Induction Hypothesis) Assume that for some n ≥ 2 we have an < 6n.

Case n+ 1: an+1 = 5an + 1 < 5(6n) + 1 = 5(6n) + 1
6n (6n) = (5 + 1

6n )6n. Note that since n ≥ 2, 1
6n < 1 and

thus 5 + 1
6n < 6. Therefore, an+1 < (5 + 1

6n )6n < 6(6n) = 6n+1.

By induction, an < 6n for all n ≥ 2.

Ex: Let b0 = e and c0 = 1, and for n ≥ 1, bn = ecn−1 and cn = ln(bn−1). Prove that for all n ≥ 1, bn = e
and cn = 1.

1.2 Rosen 5.2 – Strong Induction and the Well-Ordered Property

1.2.1 Strong Induction

The Principal of (Strong) Mathematical Induction: Let (P (n))∞n=0 be a sequence of propositions. To
prove ∀nP (n), it suffices to demonstrate the following:

1. P (0) is true.

2. If P (m) is true for 0 ≤ m < n, then P (n) is true.

(Alternatively, (2) can be stated as “For all n, [P (0) ∧ P (1) ∧ · · · ∧ P (n)]→ P (n+ 1).”]

Def: Recall the definitions of Fibonacci numbers Fn and Lucas numbers Ln:

F0 = 0 L0 = 2

F1 = 1 L1 = 1

Fn = Fn−1 + Fn−2 Ln = Ln−1 + Ln−2
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Since the recurrence relation depends on multiple previous values, regular mathematical induction does not
suffice to prove facts about these sequences!

Thm: For all n ≥ 1, Ln = Fn−1 + Fn+1.

Proof. We will prove this by strong induction.

Case n = 1: L1 = 1 = 0 + 1 = F0 + F2.

Case n = 2: L2 = 3 = 1 + 2 = F1 + F3.

(Induction Hypothesis) Now let N > 2 and assume that for all n where 1 ≤ n < N we have Ln = Fn−1+Fn+1.

Case N : By the recurrence relation of Lucas numbers, LN = LN−1 + LN−2. By the induction hypothesis,
LN−1 = FN−2 + FN and LN−2 = FN−3 + FN−1. Therefore, LN = FN−2 + FN + FN−3 + FN−1 = (FN +
FN−1) + (FN−2 + FN−3). By the recurrence relation of Fibonacci numbers, FN + FN−1 = FN+1 and
FN−2 + FN−3 = FN−1. Therefore, LN = FN−1 + FN+1.

Thus, by strong induction, we have Ln = Fn−1 + Fn+1 for all n ≥ 1.

Thm: There are Fn+1 ways to tile the 2× n chessboard with dominoes.

Proof. Let dn be the number of ways to tile the 2× n chessboard. We will prove “dn = Fn+1” for all n ≥ 0.

Case n = 0: There is 1 way to tile the 2× 0 chessboard: no dominoes! d0 = 1 = F1.

Case n = 1: There is 1 way to tile the 2× 1 chessboard: one vertical domino! d1 = 1 = F2.

Now let N > 1 and assume that for all n < N , dn = Fn+1.

Case N : Consider a domino tiling, and consider the domino covering the (1, 1) position. This tile is either
horizontal or vertical.

If the domino is horizontal, then there is another horizontal domino covering the (2, 1) position, and these
dominoes cover the (1, 1), (1, 2), (2, 1) and (2, 2) positions. Since there are dn−2 ways to tile the rest of the
positions, there are dn−2 domino tilings of the 2×n chessboard with a horizontal domino covering the (1, 1)
position.

If the domino is vertical, then it also covers the (2, 1) position. Since there are dn−1 ways to tile the rest
of the positions, there are dn−1 domino tilings of the 2× n chessboard with a vertical domino covering the
(1, 1) position.

Therefore, there are dn−2 + dn−1 ways to tile the 2 × n chessboard, so dn = dn−2 + dn−1 = Fn−1 + Fn =
Fn+1.

Note: We could prove the above using standard (incomplete) induction if we use the following parameterized
statement: P (n) = “(dn = Fn+1) ∧ (dn+1 = Fn+2)′′.

1.2.2 Binary Representations

Thm: Every natural number n can be described as a sum of powers of 2. That is, there exists a k ≥ 0 and
a tuple (ak, ak−1, . . . , a1, a0) ∈ {0, 1}k+1 such that n =

∑k
i=0 ai2

i.

Proof. Case n = 0: Let k = 0 and a0 = 0.

Case n = 1: Let k = 0 and a0 = 1.

(Induction Hypothesis) Let N > 1 be a natural number and suppose that for all n where 0 ≤ n < N , the
integer n can be described as a sum of powers of 2.
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Case N : Let k be the maximum integer such that 2k ≤ N . Then, 2k ≤ N < 2k+1. Since N > 1 we have
k ≥ 1. Let n = N − 2k, so 0 ≤ n < 2k. By the induction hypothesis, the number n can be described as a
sum of powers of 2. Let (a`, . . . , a1, a0) ∈ {0, 1}`+1 be the tuple such that n =

∑`
i=0 ai2

i. Note: if ` < k,
then we can extend ` = k by adding leading zeroes to the tuple. Also, if ` ≥ k, then specifically ak = 0 since
2k > n. (And in fact ai = 0 for all i ≥ k.)

Thus, let (a′k, a
′
k−1, . . . , a

′
1, a
′
0) be defined as a′i =

{
ai if i < k

1 if i = k
. Then,

∑k
i=0 a

′
i2
i = 2k +

∑`
i=0 ai2

i =

2k + n = N .

1.2.3 Strong Induction and Well-Ordered Property

Def: The well-ordered property of the natural numbers is the statement “Every subset of the natural numbers
has a least element.”

Note: This is not true for integers (the whole set has no minimum) or even nonnegative rationals (the set
of positive rationals has no least element).

This means we can prove Strong Induction.

Proof of Strong Induction. Let X be the set of values n such that P (n) is false. Since P (0) is true, 0 /∈ X.

If X is nonempty, then let N = minX, the minimum value of X, which exists by the well-ordered property
of the natural numbers. Since 0 /∈ X, N > 0. Therefore, since N = minX we have that P (0), . . . , P (N − 1)
are true statements (by definition of X). However, since [P (0) ∧ P (1) ∧ · · · ∧ P (N − 1)] → P (N), we have
that N is not an element of X.

Therefore, X is empty and P (n) is true for all n ≥ 0.

We can also use Well-Ordered Property directly.

Recall that the integer division algorithm takes an integer n and a divisor n and will return values q and r
such that n = qd+ r, and 0 ≤ r < d.

Thm: Let d be a positive number. For integer n there exist integers q and r such that n = qd + r and
0 ≤ r < d.

Proof. Fix n. Let S = {n− dq : q ∈ Z, n− dq ≥ 0} ⊆ N. S is nonempty since n− d(d|n|) = 1n+ d2|n| ≥ 0.
Let r = minS. By definition of S, r = n − dq for some q, and r ≥ 0. Observe that r < d since otherwise
r − d = n− d(q + 1) is also in S but smaller than r. Therefore, n = dq + r and 0 ≤ r < d.

1.2.4 Examples to Try Strong Induction

Ex: Define a sequence {an}∞n=0 by a0 = 1 and the recurrence relation an = an−1 +an−2 + · · ·+a1 +a0 +1 =

1 +
∑n−1
i=0 ai. Prove that an = 2n for all n ≥ 0.

Ex: Define a sequence {an}∞n=0 by a0 = 1 and the recurrence relation an = 2an−1+2an−2+· · ·+2a1+2a0+1 =

1 + 2
∑n−1
i=0 ai. Prove that an = 3n for all n ≥ 0.

Ex: Prove that every integer n ≥ 2 has a factorization into prime numbers.

Ex: Let φ = 1+
√
5

2 and ψ = 1−
√
5

2 . Prove that for all n ≥ 0 the Fibonacci number Fn is equal to φn−ψn

φ−ψ .
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1.2.5 Suggested Homework

Rosen 5.1:

Rosen 5.2:
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2 Wednesday, February 18

This day, we spent 50 minutes talking about Exam 1, then spent 10 minutes on the following proof.

2.0.6 Example from Computational Geometry

Def: A polygon with n sides is simple if its edges do not cross (i.e. intersect at points other than vertices
(corners)).

Thm: Every simple polygon with n sides for n ≥ 3 can be triangulated into n− 2 triangles.

Lma: Every simple polygon with at least four sides has an interior diagonal.

(This very “simple” lemma is actually very subtle and can be difficult to prove. Many incorrect proofs were
thought to hold.)

Proof of Lemma. Let P be a polygon and select a point p in the polygon (including boundary) by first
minimizing the x coordinate and among those points minimize the y coordinate. (This is called an “extremal
choice.”) The point p is necessarily on the boundary, or else it does not minimize the x coordinate. The
point p is necessarily a vertex, or else it either does not minimize the x coordinate (edge is angled) or it
does not minimize the y coordinate (edge is straight up-and-down). Now that p is a vertex, there are two
vertices a and b on either side of p in the polygon, where the angle ∠apb is the interior angle at p. Note:
Due to the extremal choice of p, the angle ∠apb is at most π radians (or at most 180 degrees) or else p does
not minimize the x coordinate in P .

Consider the triangle 4 pab. If this triangle does not intersect any other edges of P , then the line ab is a
diagonal.

Otherwise, there is at least one vertex in the interior of the triangle 4 pab. (Here we must be careful! We
cannot select just ANY vertex, nor can we select the CLOSEST vertex.) Among these points, select the
vertex v that minimizes the angle ∠ pav (a second extremal choice). We claim that the line segment pv is a
diagonal of P . Note, that if pv crosses an edge ij, then since P is simple, one of the vertices i or j (w.l.o.g
i) is in the triangle 4 pav. Then the angle ∠ pai is smaller than the angle ∠ pav, contradicting our extremal
choice of v.

Proof of Theorem. Case n = 3: Every simple polygon with three sides is a triangle, which is triangulated
into 1 = 3− 2 triangles.

(Induction Hypothesis) Let N > 3 and assume that for all n where 3 ≤ n < N every simple polygon with n
sides can be triangulated into n− 2 triangles.

Case N : Let P be a polygon with N sides. By the lemma, there exists a diagonal ab of P . Split the
polygon P into two parts given by using ab on the boundary of each. Thus, we have two polygons P1 and
P2 each using n1 or n2 sides, where n1 + n2 = N + 2 (two “new” sides are from the line segment ab). By
the induction hypothesis, P1 has a triangulation into n1 − 2 triangles. Also by the induction hypothesis, P2

has a triangulation into n2 − 2 triangles. Combining these triangulations forms a triangulation of P into
n1 + n2 − 4 triangles. Since n1 + n2 − 4 = N + 2− 4 = N − 2, the statement holds.

Therefore, by strong induction every simple polygon with n sides has a triangulation into n − 2 triangles
when n ≥ 3.
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3 Friday, February 20

3.1 LLM 5.4 — State Machines

Reading: LLM 5.4.

This topic does NOT appear in the Rosen textbook! However, the idea of a state machine is very important
to computer science and the study of algorithms!

We will consider some examples of state machines before we rigorously define them.

The Collatz 3n+ 1 Problem

Suppose n is a number. If n = 1, then do nothing. However, if n > 1, then either: consider n
2 if n is even,

or consider 3n+ 1 if n is odd.

Ex: Start at n = 7. We will list the values that we consider, in order:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Ex: Start at n = 15. We will list the values that we consider, in order:

15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Collatz Conjecture: Let n be any number at least 1. The process above will eventually terminate at
n = 1.

See http://en.wikipedia.org/wiki/Collatz_conjecture for more information.

The Farmer and the River

A farmer is traveling with his Lettuce, Goat, and Wolf. The Wolf would eat the Goat if the farmer was not
watching. The Goat would eat the Lettuce if the farmer was not watching. The group comes to a river and
there is a canoe that can fit the farmer and one other item. The farmer would like to get across the river
without losing the Lettuce or the Goat. How should the farmer use the canoe?

Bishops Moves

Consider the infinite chessboard Z× Z. That is, every square is associated with an ordered pair (i, j) where
i, j ∈ Z.

A bishop can move diagonally. That is, if the bishop is in the position (i, j), then the bishop can move to
the position (i± k, j ± k) where k is a positive integer.

Thm: If a bishop starts at position (0, 0), then the bishop cannot reach the position (1, 0).

Domino Tilings

Suppose that B is a chessboard (with some squares removed, possibly). We want to create a domino tiling
of B. We say a partial tiling of B is an arrangement of dominoes such that every square is covered by at
most one domino.

Given a partial tiling of B, we may attempt to place a domino on the board such that it does not cover a
square already covered by a domino. This creates another partial tiling. The partial tiling may be a full
domino tiling (if no squares remain uncovered) or may be a “maximal partial tiling” if no two uncovered
squares are adjacent (so no domino can be placed!).

6
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Note: B has a domino tiling if and only if there exists a list of domino placements that creates partial tilings
leading to a complete tiling.

Thm: If B has a domino tiling, then B has an even number of squares.

GCD Algorithm

Recall Euclid’s algorithm for computing the greatest common divisor.

Input: Integers a and b where a ≥ b ≥ 0.

If b ≡ 0, then return a.

Otherwise, let q, r be integers such that a = qb+ r and 0 ≤ r < b.

Assign a← b and b← r, then repeat the algorithm.

We may prove that this algorithm is correct later, but instead let’s prove that this algorithm will terminate
in a finite number of steps.

Thm: If a and b are integers with a ≥ b ≥ 0, the above algorithm will halt in a finite number of steps.

Proof. Observe that every time a and b are reassigned, b decreases by at least one (as the value r is guaranteed
to be in the range 0 ≤ r < b). Therefore, the values a and b are reassigned at most b times (and the if
statement is tested at most b+ 1 times).

Mandlebrot Set

Consider a complex number c ∈ C. Follow this process: Start with z1 = c. Then for n ≥ 1, let zn+1 = z2n+c.
Define a subset M ⊂ C as the set of values c where there exists a real number xc > 0 where |zn| < xc for all
n ≥ 1. The set M is called the Mandlebrot set.

See http://en.wikipedia.org/wiki/Mandelbrot_set.

3.1.1 State Machine Definition

Def: A state machine is a triple (S, T, s0) where S is a set of states, T is a set of transitions between states
(so T is a subset of S×S), and s0 ∈ S is an initial state. A state machine executes by constructing a sequence
s0, s1, . . . , sn, . . . where s0 is the initial state, and for all n ≥ 0, when sn is a state in S, the sequence value
sn+1 is a state in S such that the pair (sn, sn+1) is in T (that is, we can transition from sn to sn+1).

The Collatz 3n+ 1 Problem

Let k be a positive integer. Let S = Z+, the set of positive integers. Define the transition set T as

T =
{

(2n, n) : n ∈ Z+
}︸ ︷︷ ︸

even transitions

∪
{

(2n+ 1, 3(2n+ 1) + 1) : n ∈ N
}︸ ︷︷ ︸

odd transitions

.

Define the Collatz machine Mk = (S, T, k), so the initial state of Mk is the integer k. The state machine Mk

follows the Collatz process.

Conjecture: For every k ≥ 1, the Collatz machine Mk will reach 1.

The Farmer and the River

7
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A farmer is traveling East with his Lettuce, Goat, and Wolf. The Wolf would eat the Goat if the farmer
was not watching. The Goat would eat the Lettuce if the farmer was not watching. The group comes to a
river and there is a canoe that can fit the farmer and one other item. The farmer would like to get across
the river without losing the Lettuce or the Goat. How should the farmer use the canoe?

We can model the situation using a state machine. Let U = {F,L,G,W} be a universe containing the
Farmer, Lettuce, Goat, and Wolf. Our states will be pairs (A,A) where A is a subset of U corresponding to
which animals are on the West side of the river. A state is acceptable if it does not result in the Goat eating
the Lettuce or the Wolf eating the Goat. Thus, if {L,G} ⊆ A but F ∈ A, then (A,A) and (A,A) are not
acceptable states. Thus, if {G,W} ⊆ A but F ∈ A, then (A,A) and (A,A) are not acceptable states.

Therefore, let S be the set of acceptable states. Our initial state is ({F,L,G,W},∅) and we want to reach
the state (∅, {F,L,G,W}). We need to describe our transitions!

Suppose (A,A) is an acceptable state. If F ∈ A, then for each subset B ⊂ A \ {F}, we can transition to
(A\ (B∪{F}), A∪B∪{F}), if the resulting state is acceptable. If F ∈ A, then for each subset B ⊂ A\{F},
we can transition to (A ∪B ∪ {F}, A \ (B ∪ {F})), if the resulting state is acceptable.

We can now explore the space of reachable states. (Draw a picture, starting at (FLGW,∅), following
transitions.)

Bishops Moves

Let B = (S, T, s0) be the state machine where S = Z× Z, s0 = (0, 0), and the transition set T is defined as

T =
{(

(i, j), (i+ (−1)ak, j + (−1)bk)
)

: i, j, k ∈ Z, a, b ∈ {0, 1}
}
.

This machine B encodes all possible Bishop moves, starting at the position (0, 0).

When talking about state machines, we will make use of the following concept.

Let M = (S, T, s0) be a state machine.

Preserved Invariant: A property P : S → {T,F} is a preserved invariant for M
if “∀(s, t) ∈ T , P (s)→ P (t).” That is, if a state has property P , then all states that
are reachable from that state by one transition also have that property. Invariant

Principle: If a preserved invariant of a state machine is true for the start state,
then it is true for all reachable states.

Observe that the above concept is equivalent to induction. If s0, s1, s2, . . . , sn, . . . is a sequence of states
given by a state machine, then let Q(n) = P (sn). The base case is that Q(0) is true, which means the
property is held by the initial state s0. The preserved invariant property means that if Q(n) is true, then
Q(n + 1) is true. So, you can use induction explicitly, or you can prove that a property is a preserved
invariant.

Thm: If a bishop starts at position (0, 0), then the bishop cannot reach the position (1, 0).

Proof. Let P (i, j) be the property “i + j is even.” We claim that P is a preserved invariant on the state
machine B.

Suppose that (i, j) → (i + (−1)ak, j + (−1)bk) is a transition in the machine B and that i + j is even. Let
i+j = 2` for some integer `. If a 6= b, then i+(−1)ak+j+(−1)bk = i+j = 2`, so the resulting state has an even
coordinate sum. If a = b, then i+(−1)ak+j+(−1)bk = (i+j)+(−1)a(2k) = 2`+(−1)a(2k) = 2(`+(−1)ak),
so the resulting state has an even coordinate sum. Therefore, P is a preserved invariant.

Also, 0 + 0 = 2(0) so P (0, 0) is true.

Thus by the Invariant Principle, P (i, j) is true for all reachable states. Since P (1, 0) is false, (1, 0) is not a
reachable state!
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Domino Tilings

Suppose that B is a chessboard (with some squares removed, possibly). Let MB = (S, T, s0) be the state
machine with states S given by the set of partial domino tilings of B, transitions T given by ways to place
a new domino onto a partial tiling to produce a new partial tiling, and initial state s0 given by the empty
tiling.

Thm: If B has a domino tiling, then B has an even number of squares.

Proof. For a partial tiling t ∈ S, we let P (t) be the property “The tiles in t cover an even number of squares.”
Notice that P (s0) is true.

Suppose that t→ t′ is a transition given by placing a new domino onto the partial tiling t to form a partial
tiling t′. If P (t) is true, then t covers 2k squares for some k ≥ 0. Then t′ covers 2k + 2 = 2(k + 1) squares,
so P (t′) is true.

Therefore, if a complete tiling t is reachable from the empty tiling s0, then P (t) is true.

GCD Algorithm

Let E = (S, T, s0) be the machine where S is the set of pairs (a, b) ∈ N × N where a ≥ b, s0 = (a0, b0) for
some pair (a0, b0) ∈ N× N, and the transition set T is given by

T =
{(

(a, b), (b, a%b)
)

: a, b ∈ N, a ≥ b > 0}.

(Recall that a%b returns the remainder after integer division of a by b.)

The theorem that the GCD Algorithm halts is equivalent to saying this machine will reach a state (a, 0)
(where there are no transitions out).

Let M = (S, T, s0) be a state machine.
Decreasing Functions: Let f : S → N be a function1 The function f is decreasing
if ∀(s, t) ∈ T (f(s) > f(t). That is, for every transition s → t, the value of f
decreases from f(s) to f(t) with f(t) < f(s).

Monotonicity Principle: If f : S → N is a decreasing function, then the time it
takes for a machine to terminate starting at a state s is at most f(s).

Thm: The GCD Algorithm will terminate in a finite number of steps.

Proof. Define f(a, b) = a + b. Note that if (a, b) → (b, r) is a transition, then 0 ≤ r < b ≤ a. Therefore,
f(b, r) = b+ r < a+ b = f(a, b) and hence f is a decreasing function.

By the monotonicity principle, starting at (a, b) will result in a halt in at most a+ b steps. (This is a gross
over-count!)

Thm: Let d ≥ 1 be a positive integer. Let Pd(a, b) be the property “a and b are both multiples of d.”
Pd(a, b) is a preserved invariant for the machine E.

Proof. Suppose that Pd(a, b) is true and (a, b) → (b, r) is a transition (implying b > 0 and r = a%b). Then
there exist nonnegative integers i, j such that a = di and b = dj.

By integer division with remainder, there exists an integer q such that a = qb + r. So, di = qdj + r, which
implies that r = d(i− qj). Therefore, r is a multiple of d, and hence Pd(b, r) is true.

9
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Thm: The GCD algorithm outputs the correct value.

In order to prove this statement, we need to make a different state machine, one that is reversible.

Let M = (S, T, s0) be a state machine.
Reversible Transitions: The machine M is reversible (or undirected) if whenever
a transition (s, t) is in T , the transition (t, s) is also in T . That is, if s → t is a
transition, then also t→ s is a transition.

Reversibility Principle: If M is a reversible machine and P is an invariant
property, then P holds on the initial state if and only if P holds on all reachable
states.

To make M reversible, we will make M ′ = (S, T ∪ T ′, s0) where T ∪ T ′ is the set of transitions from T (of
the kind (a, b)→ (b, a%b)) along with the transitions T ′ given as:

T ′ =
{(

(a, b), (ia+ b, a)
)

: a, b, i ∈ N, a ≥ b, i > 0
}
.

For the transition (a, b) → (ia + b, a), note that (ia + b)%a = b, so these transitions are reversals of the
transitions from T .

Proof. Recall the property Pd is a preserved invariant for the transitions in T . We will show it is also a
preserved invariant for the transitions in T ′. Suppose (a, b)→ (ia+ b, a) is a transition in T ′ and Pd(a, b) is
true. Then a = dk and b = d` for integers k and `. Then ia + b = idk + d` = d(ik + `), so d is a divisor of
both ia + b and a. Hence Pd(ia + b, a) is true and Pd is a preserved invariant for the transitions in T and
T ′. By the Reversibility Principle, Pd(a, b) is true if and only if it holds for all reachable states (a′, b′).

Let d be the greatest common divisor of a and b. Then Pd(a, b) is true, and Pd′(a, b) is false for all d′ > d. If
we follow transitions from T , we will terminate in a state (r, 0). By the Invariant Principal, Pd(r, 0) is true,
so d is a divisor of r, and d ≤ r. However, r is a divisor of both r and 0, so by the Reversibility Principle
Pr(a, b) is true. Therefore, r ≤ d (since d is the greatest common divisor of a and b) and therefore r = d.

Mandlebrot Set

Fix a complex number c ∈ C. The Mandelbrot machine Mc = (S, T, c) has states S = C and transition set
T given by

T = {(z, z2 + c) : z ∈ C}.

The Mandlebrot set M is the set of complex numbers c where the Mandlebrot maching Mc has all reachable
states within a finite distance from 0.

3.1.2 Suggested Homework

LLM Problems 5.10, 5.28–38.
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4 Extra Strong Induction Example

The L-shaped Tetris piece (or tetromino, see the Wikipedia page) consists of four squares: three of which
are in a line and a fourth attached to one end of that line. See the figure below for all of the arrangements
of the L-shaped Tetris piece (or L-piece).

1/29/2015 tetrominos-L.svg

file:///Users/dstolee/Box%20Sync/Teaching/2015/COMS330/homework/figures/tetrominos-L.svg 1/1

Thm: If k is odd, then the 3× 4k chessboard cannot be tiled using L-pieces.

Proof. We will use strong induction to prove that if k ≥ 1 is odd, then the 3× 4k chessboard cannot be tiled
using L-pieces. We first make a claim about any tiling:

Claim: Any tiling of the 3 × 4k chessboard using L-pieces must use an L-piece covering all three rows on
the left-most and right-most edges.

Proof of Claim. Suppose there is a tiling that does not use an L-piece on an edge of length three (without
loss of generality, we use the left edge). The top-left corner must be covered by some L-piece. Consider the
possible placements, by how many squares of the L-piece are on the left edge.

Case 1: Exactly one square of the L-piece is on the left edge. In this case, the L-piece covers the three
squares in the second column, leaving two squares on the left edge that cannot be covered by an L-piece!

Case 1. Case 2.

Case 2: Exactly two squares of the L-piece are on the left edge. There are two ways for the L-piece to
cover two squares on the left edge. However, since the bottom-left corner must be covered by an L-piece,
the top-left corner piece cannot cover three squares in the middle row. So, the top-left corner is covered by
an L-piece that has three squares on the top edge. Finally, the bottom-left corner must be covered by an
L-piece and the only way this can be placed is with three squares on the bottom edge. This leaves the square
in the (2, 2) position surrounded by squares already covered, so no L-piece can cover this square!

Case k = 1: By the claim above, any tiling of the 3 × 4 chessboard must include an L-piece covering three
squares of the left edge. Also, the tiling must include an L-piece covering three squares of the right edge.
These L-pieces are either arranged such that they cover adjacent squares, or do not. When they cover
adjacent squares, the four squares not covered by these two pieces form a 2 × 2 chessboard, which cannot
fit an L-piece. When they do not cover adjacent squares, the four squares not covered by these two pieces
form a 3× 2 chessboard with two opposite corners missing, which cannot fit an L-piece. Therefore, there is
no tiling of the 3× 4 chessboard.

Covering Adjacent Squares Not Covering Adjacent Squares
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(Induction Hypothesis) Suppose that the statement is true for all odd values of k with k < K for some
K > 1.

Case K: Suppose that we have a tiling of the 3 × 4K chessboard using L-pieces. If an L-piece is placed
vertically so it covers all three rows of the chessboard, then the tiling of the 3 × 4K chessboard partitions
into tilings of a 3×m chessboard and a 3× (4K−m) chessboard, for some m. Since L-pieces cover 4 squares
each, these tilings cover a multiple of 4 squares, so 3m is a multiple of 4 and therefore m = 4n for some
integer n. Finally, this implies that the 3× 4n chessboard and the 3× 4(K − n) chessboard are tiled using
L-pieces. Since K is odd, one of n or K − n is odd. Suppose without loss of generality, n is odd, but by the
induction hypothesis the 3× 4n chessboard cannot be tiled using L-pieces.

Therefore, no L-piece is placed vertically to cover all three rows of the chessboard, except for the left-most
edge and the right-most edge.

We now investigate our tiling, starting on the left edge. As claimed, all three squares on this edge are
covered by the same L-piece. Since the square in the (2,2) position must be covered by an L-piece, the only
arrangement of an L-piece covering this square without immediately making a tiling impossible is to have
that L-piece cover the other open position in the second column. Therefore, we definitely have a tiling that
looks like the below (or its vertical mirror).

We now consider how the (3,3) position is covered. Note that if it is covered by an L-piece without also
covering the (2,3) position, the (2,3) position cannot be covered by an L-piece. Thus, both the (3,3) and
(3,2) positions are covered by the same L-piece. There are two options to cover these two by a single L-piece,
and they each “force” another L-piece, as in the pictures below.

Observe that both options cover the same set of squares, so we can take either option. We now consider how
the (1,5) position is covered, and there is exactly one option.

Given this set of covered squares, we can now consider the (3,7) position. This cannot be covered by
an L-piece that covers all three rows (as below) because that would create a vertical L-piece, which we
demonstrated does not exist.

Bad example!

12
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Therefore, the L-piece covering the (3,7) position covers three squares on the bottom edge.

This forces the (2,8) position to be covered by an L-piece that has three squares on the top edge.

Now consider how the (2,10) position is covered by an L-piece. If it is covered by an L-piece that does not
have three squares on the bottom row, observe that the tiling cannot continue in one or two more placements
of L-pieces [I know this is sketchy, but its’ getting late]. Thus, the (2,10) position is covered by an L-piece
covering three squares on the bottom row, as in the picture below.

Now, see the two thick black lines. If we remove all of the L-pieces between them and take the two L-pieces
on the left, flip them vertically, they fit nicely with the rest of the tiling to the right. See the picture below.

Therefore, our tiling of the 3× 4K chessboard gives us a way to tile the 3× 4(K − 2) chessboard. However,
our induction hypothesis claims this is impossible, so we have a contradiction!
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