
COM S 330 — Lecture Notes — Week of Feb 23–27

1 Monday, February 23

1.1 LLM 5.4: State Machines

Reading: LLM 5.4.

1.1.1 State Machine Definition

Def: A state machine is a triple (S, T, s0) where S is a set of states, T is a set of transitions between states
(so T is a subset of S×S), and s0 ∈ S is an initial state. A state machine executes by constructing a sequence
s0, s1, . . . , sn, . . . where s0 is the initial state, and for all n ≥ 0, when sn is a state in S, the sequence value
sn+1 is a state in S such that the pair (sn, sn+1) is in T (that is, we can transition from sn to sn+1).

When talking about state machines, we will make use of the following concept.

Let M = (S, T, s0) be a state machine.

Preserved Invariant: A property P : S → {T,F} is a preserved invariant for M
if “∀(s, t) ∈ T , P (s) → P (t).” That is, if a state has property P , then all states
that are reachable from that state by one transition also have that property.

Invariant Principle: If a preserved invariant of a state machine is true for the
start state, then it is true for all reachable states.

Observe that the above concept is equivalent to induction. If s0, s1, s2, . . . , sn, . . . is a sequence of states
given by a state machine, then let Q(n) = P (sn). The base case is that Q(0) is true, which means the
property is held by the initial state s0. The preserved invariant property means that if Q(n) is true, then
Q(n + 1) is true. So, you can use induction explicitly, or you can prove that a property is a preserved
invariant.

1.1.2 GCD Algorithm

Recall Euclid’s algorithm for computing the greatest common divisor.

Input: Integers a and b where a ≥ b ≥ 0.

If b ≡ 0, then return a.

Otherwise, let q, r be integers such that a = qb+ r and 0 ≤ r < b.

Assign a← b and b← r, then repeat the algorithm.

We may prove that this algorithm is correct later, but instead let’s prove that this algorithm will terminate
in a finite number of steps.

Thm: If a and b are integers with a ≥ b ≥ 0, the above algorithm will halt in a finite number of steps.

Proof. Observe that every time a and b are reassigned, b decreases by at least one (as the value r is guaranteed
to be in the range 0 ≤ r < b). Therefore, the values a and b are reassigned at most b times (and the if
statement is tested at most b+ 1 times).

1

COM S 330 — Lecture Notes — Week of Feb 23–27

Let E = (S, T, s0) be the machine where S is the set of pairs (a, b) ∈ N × N where a ≥ b, s0 = (a0, b0) for
some pair (a0, b0) ∈ N× N, and the transition set T is given by

T =
{(

(a, b), (b, a%b)
)

: a, b ∈ N, a ≥ b > 0}.

(Recall that a%b returns the remainder after integer division of a by b.)

The theorem that the GCD Algorithm halts is equivalent to saying this machine will reach a state (a, 0)
(where there are no transitions out).

Let M = (S, T, s0) be a state machine.
Decreasing Functions: Let f : S → N be a function1 The function f is decreasing
if ∀(s, t) ∈ T (f(s) > f(t). That is, for every transition s → t, the value of f
decreases from f(s) to f(t) with f(t) < f(s).

Monotonicity Principle: If f : S → N is a decreasing function, then the time it
takes for a machine to terminate starting at a state s is at most f(s).

Thm: The GCD Algorithm will terminate in a finite number of steps.

Proof. Define f(a, b) = a + b. Note that if (a, b) → (b, r) is a transition, then 0 ≤ r < b ≤ a. Therefore,
f(b, r) = b+ r < a+ b = f(a, b) and hence f is a decreasing function.

By the monotonicity principle, starting at (a, b) will result in a halt in at most a+ b steps. (This is a gross
over-count!)

Thm: Let d ≥ 1 be a positive integer. Let Pd(a, b) be the property “a and b are both multiples of d.”
Pd(a, b) is a preserved invariant for the machine E.

Proof. Suppose that Pd(a, b) is true and (a, b) → (b, r) is a transition (implying b > 0 and r = a%b). Then
there exist nonnegative integers i, j such that a = di and b = dj.

By integer division with remainder, there exists an integer q such that a = qb + r. So, di = qdj + r, which
implies that r = d(i− qj). Therefore, r is a multiple of d, and hence Pd(b, r) is true.

Thm: The GCD algorithm outputs the correct value.

In order to prove this statement, we need to make a different state machine, one that is reversible.

Let M = (S, T, s0) be a state machine.
Reversible Invariant: A property P : S → {T,F} is a reversibile invariant if
for all transitions s → t we have P (s) = P (t). (Equivalently, (s → t) implies
P (s)↔ P (t).)

Reversibility Principle: If P is a reversible property and s is a state reachable
from the initial state s0, then P (s) = P (s0).

Proof. Recall the property Pd is a preserved invariant for the transitions in T . We will show it is also a
reversible invariant for the transitions in T . Suppose (a, b)→ (b, a%b) is a transition in T and Pd(b, a%b) is
true. Then b = d` and a%b = r = dk for some integers k and `. By definition of integer division there is an
integer q where a = qb + r. Then a = qb + r = q(d`) + dk = d(q` + k), so d is a divisor of both a and b.
Thus, Pd(a, b) is true.

Let d be the greatest common divisor of a and b. Then Pd(a, b) is true, and Pd′(a, b) is false for all d′ > d. If
we follow transitions from T , we will terminate in a state (r, 0). By the Invariant Principal, Pd(r, 0) is true,

2

COM S 330 — Lecture Notes — Week of Feb 23–27

so d is a divisor of r, and d ≤ r. However, r is a divisor of both r and 0, so by the Reversibility Principle
Pr(a, b) is true. Therefore, r ≤ d (since d is the greatest common divisor of a and b) and therefore r = d.

1.1.3 Suggested Homework

LLM Problems 5.10, 5.28–38.

3

COM S 330 — Lecture Notes — Week of Feb 23–27

2 Wednesday, February 25

2.1 LLM 5.4: State Machines — Rosen 5.3: Recursive Definitions and Struc-
tural Induction

Reading: LLM 5.4, 6.1. Rosen 5.3.

2.1.1 Recursively Defined Functions

If the definition of a function refers to its own output (on different, usually smaller values), then the function
is defined recursively.

For example, the Fibonacci sequence {Fn}∞n=0 is really a function from the natural numbers to the natural
numbers, defined as F (0) = 0, F (1) = 1, and F (n) = F (n− 1) +F (n− 2) for all n ≥ 2. This is well-defined,
but you should be very careful when constructing a recursive function that it is well defined!

We will use the following property of the Fibonacci numbers.

Thm: Let φ = 1+
√
5

2 . For all n ≥ 3, Fn ≥ φn−2.

There is a proof of this fact in the book, using strong induction.

Lamé’s Theorem. Let a and b be positive integers with a ≥ b. The number of divisions used by the
Euclidean algorithm to find GCD(a, b) is less than or equal to five times the number of decimal digits in b
(i.e. at most 5dlog10 be).
Note: We will prove something slightly weaker: The GCD state machine follows at most 5(log10 b + 1)
transitions.

Proof. If we follow the algorithm, and consider all of the pairs we use during the while loop, we will have a
sequence (a0, b0), (a1, b1), . . . (an, bn), (an+1, bn+1) where for all i ∈ {0, . . . , n}, ai+1 = bi and bi+1 = ai%bi.
(Note that now we can replace ai with bi−1.) Finally, since we halted, bn+1 = 0. By the definition of integer
division, for every i ∈ {0, . . . , n}, there is an integer qi where bi−1 = qibi + bi+1. Also, since ai ≥ bi for all i
(check!) we have that qi ≥ 1, so bi−1 ≥ bi + bi+1.

Specifically in the last equation, we have bn−1 = qnbn + bn+1, but since bn−1 > bn and bn+1 = 0, we have
that qn ≥ 2.

Claim: For all k ≥ 0, bn−k ≥ Fk+2.

We prove this claim by induction on k.

Case k = 0: bn ≥ 1 = F2.

Case k = 1: bn−1 ≥ 2bn ≥ 2 = F3.

(Strong Inductive Hypothesis) Suppose that for some K where 0 < K ≤ n we have bn−k ≥ Fk+2 for all k
where 0 ≤ k < K.

Case K: bn−K = qn−(K−1)bn−(K−1) + bn−(K−2) ≥ bn−(K−1) + bn−(K−2) ≥ FK+1 + FK+2 = FK+3.

Thus, bn−k ≥ Fk−2, proving the claim. Therefore b0 = bn−n ≥ Fn−2 ≥ φn−4.

We now have an exponential relationship between the value of b0 and the number of steps until halting
(n + 1). That is log10 b0 ≥ log10 φ

n−4 = (n − 4) log10 φ. Since φ ≈ 1.61, and log10 φ ≈ 0.209 > 1
5 , we have

that log10 b0 ≥ 1
5 (n− 4). Thus, 5(log10 b0 + 1) ≥ n+ 1.

4

COM S 330 — Lecture Notes — Week of Feb 23–27

2.1.2 Alphabets and Strings

Let Σ be a finite set (here we say Σ is the name of a set, not the summation notation). We will use Σ to
denote a special set, called an alphabet. The elements of Σ will be “letters” of “words” but in a very abstract
sense. Typically, Σ = {0, 1}, but Σ could be any finite set.

For k ≥ 0, the set Σk is the set of k-tuples where every entry comes from Σ. The set Σ∗ is equal to ∪∞k=0Σk,
the set of all finite strings (note that for every finite string x of length k, x ∈ Σk ⊂ Σ∗). We will denote a
string x = (x1, x2, . . . , xk) as x1x2 . . . xk.

If Σ = {0, 1}, then Σ∗ contains all finite-length binary strings. This includes the empty string w which has
length 0.

We can define state machines using Σ∗ as the state space! A natural class of transitions is to move between
strings by adding or removing letters from a string. Let Σ = {0, 1} and consider the following possible
transitions:

1. If x = x1x2 . . . xk is a string and k is even, then x1x2 . . . xk → x1x2 . . . xk1 is an allowed transition.
(Append a 1 to the end of the string.)

2. If x = x1x2 . . . xk is a string and k is odd, then x1x2 . . . xk → x1x2 . . . xk0 is an allowed transition.
(Append a 0 to the end of the string.)

3. If x = x1x2 . . . xk is a string and k ≥ 1, then x1x2 . . . xk → x2 . . . xk is an allowed transition. (Delete
the first position.)

Thm: If x = x1x2 . . . xk is any string in Σ∗, then x is reachable from the empty string by the above
transitions.

Proof. Starting from the empty word w, follow k total transitions of type (1) and (2), alternating as necessary
to create the string 101010 . . . 10 or 101010 . . . 01 of length k. For each i ∈ {1, 2, . . . , k}, we will make the
following choices:

• If xi = 1 and the current string has even length, then use (1) to append a 1.

• If xi = 0 and the current string has odd length, then use (2) to append a 0.

• If xi = 1 and the current string has odd length, then use (3) to delete the first position, then (1) to
append a 1.

• If xi = 0 and the current string has even length, then use (3) to delete the first position, then (2) to
append a 0.

During this process, we may have deleted some leading positions, but at most one position was deleted per
letter that was added. Therefore, we deleted no more than k elements, which is the length we had before
adding the letters x1 . . . xk. Thus, there are at least k letters in the string at this point, and the final k
letters correspond to the string x.

Use (3) to delete the first position until the length of the string is k. The resulting string is x.

Def: Let Σ be a finite alphabet. Define W as follows: (Basis) the empty word is in W , and (Recursive Step)
if x1 . . . xn ∈W , and y ∈ Σ, then x1 . . . xny ∈W .

Thm: W = Σ∗.

5

COM S 330 — Lecture Notes — Week of Feb 23–27

Proof. We must show W ⊆ Σ∗ and Σ∗ ⊆W .

(W ⊆ Σ∗) Here we must claim that all elements of W are finite-length strings in the alphabet Σ. We create
a state machine M with initial state w, the empty word. If x is a reachable state, then we let x→ xy be a
possible transition for every y ∈ Σ. Thus, the elements of W are exactly the reachable states in this state
machine! Our preserved invariant is this: “x is a word in Σ∗.” If x is a word in Σ∗ (so x = x1 . . . xn ∈ Σn for
some n), then the concatenation xy = x1 . . . xny ∈ Σn+1 is also a word in Σ∗. By the invariance principle,
every element of W is also an element of Σ∗.

(Σ∗ ⊆W) For this case, we need to demonstrate that for any word x1 . . . xn ∈ Σ∗, we have that x1 . . . xn ∈W .
Here we use regular induction to prove “Σn ⊆W” for all n ≥ 0.

Case n = 0: Σ0 = {w} where w is the empty word. w ∈W .

(Induction Hypothesis) Let n ≥ 0 and suppose that Σn ⊆W .

Case n + 1: Let x1 . . . xnxn+1 ∈ Σn+1. The word x1 . . . xn is in Σn, and Σn ⊆ W by the Induction
Hypothesis. By the recursive step, since xn+1 ∈ Σ and x1 . . . xn ∈ W , we have that x1 . . . xnxn+1 ∈ W .
Therefore, Σn+1 ∈W .

Since every element in Σ∗ is in some set Σn, we have that Σ∗ ⊆W .

We can define an invariant, called length, on the set Σ∗. Define the function ` : Σ∗ → N as (Basis) `(w) = 0
where w is the empty word, and (Recursive Step) if x ∈ W , then `(x1) = `(x) + 1 and `(x0) = `(x) + 1.
The length of a string x is usually denoted by |x| = `(x).

We can define a set S recursively by using a Basis: x1, . . . , xn ∈ S and a Recursive Step “if x ∈ S then
f(x) ∈ S” (or sometimes, “if x ∈ S, then Ax ⊆ S” where Ax is a set defined by the element x).

Note. In the previous example, we used one element for the Basis: the empty word is in W . In the Recursive
Step, we use the set form: for an alphabet Σ and a word x = x1x2 . . . xn, let Ax = {x1 . . . xny : y ∈ Σ}.
Then our Recursive Step is that for all x ∈W , Ax ⊆W .

Exclusion Rule. A recursively defined set contains only the elements that are required to be in the set by
the implications.

An equivalent definition of the exclusion rule is that we have a state machine M whose states are all possible
set elements, and we have a transition x → y if and only if the implication step has y = f(x) or y ∈ Ax.
We can then define the set S to be all states reachable from an initial state (defined by the base case). This
allows us to use the Invariance Principle when proving things about elements of our recursively-defined set!

Def: A proof by structural induction consists of two parts. These parts are

BASIS STEP: Show that the result holds for all elements specified in the basis step of the recursive
definition to be in the set.

RECURSIVE STEP: Show that if the statement is true for each of the elements used to construct new
elements in the recursive step of the definition, the result holds for these new elements.

The Recursive Step of this proof is essentially showing that in our state-machine description, the property
“x ∈ S” is a preserved invariant.

Ex: Define S ⊆ R as (Basis) 0 ∈ S, and (Recursive Step) If x ∈ S, then x+ 1 ∈ S. Prove that S = N.

Ex: Define S ⊆ R as (Basis) 2 ∈ S, and (Recursive Step) If x ∈ S and y ∈ S, then xy ∈ S. Prove that
S = {2i : i ≥ 1}.
Ex: Define S ⊆ R as (Basis) 1 ∈ S, and (Recursive Step) If x ∈ S, then x + x ∈ S and 1

x ∈ S. Prove that
S = {2i : i ∈ Z}.
Ex: Define S ⊆ R as (Basis) 0 ∈ S, and (Recursive Step) If x ∈ S, then x + 1 ∈ S, −x ∈ S, and if x > 0
then 1

x ∈ S. Prove that S = Q. (Hint: To show that Q ⊆ S, let p
q be a fraction where p and q have no

6

COM S 330 — Lecture Notes — Week of Feb 23–27

common divisors other than 1 and p ≥ 0 and q > 0. Use strong induction on p + q ≥ 1 to show that each
such fraction p

q is in S; use either p
q − 1 or q

p − 1 in the induction step.)

Ex: Let Σ = {0, 1}. Define S ⊆ Σ∗ as (Basis) w ∈ S where w is the empty word, and (Recursive Step)
If x1 . . . xn ∈ S then x1 . . . xn0 ∈ S and for every k ≥ 0, the string x1 . . . xn1 0 . . . 0︸ ︷︷ ︸

k zeroes

1 ∈ S. Prove that

S = {x ∈ Σ∗ : there are an even number of 1’s in x}.
Ex: Let Σ = {0, 1}. Define S ⊆ Σ∗ as (Basis) 0 ∈ S, 1 ∈ S and w ∈ S where w is the empty word, and
(Recursive Step) If x ∈ S, then 0x0 ∈ S and 1x1 ∈ S. Prove that S is the set of palindromes: strings
x1 . . . xn where x1 . . . xn = xn . . . x1.

Ex∗: Let Σ = {0, 1}. Define S ⊆ Σ∗ and T ⊆ Σ∗ as (Basis) w ∈ S where w is the empty word and
1 ∈ T , and (Recursive Step) If x1 . . . xn ∈ S then x1 . . . xn0 ∈ S and x1 . . . xn1 ∈ T ; if x1 . . . xn ∈ T then
x1 . . . xn0 ∈ T and x1 . . . xn1 ∈ T . Prove that S = {x ∈ Σ∗ : there are an even number of 1’s in x} and
T = {x ∈ Σ∗ : there are an odd number of 1’s in x}.
Ex∗: (See LLM 6.2) Let Σ = {[,]}. Define M ⊆ Σ∗ as (Basis) w ∈ M where w is the empty word, and
(Recursive Step) If x ∈M and y ∈M , then x ·y ∈M (x ·y is the concatenation of the strings) and [x] ∈M .
Prove that the set M is equal to the set of correctly-nested brackets, that is in a string x1 . . . xn the opening
brackets [are paired with closing brackets] such that if (xi, xj) is such a pair ([,]) then i < j, and if (xi, xj)
and (xa, xb) are two distinct pairs where i < a then b < j.

Recommended Homework: Rosen 5.3: 1–4, 5–6, 7–8, 12–19, 20–21, 23–25, 26–27, 28∗, 32, 36∗, 40∗, 47∗,
48–52, 55., 60–62, 63–65.

7

COM S 330 — Lecture Notes — Week of Feb 23–27

3 Friday, February 25, 2015

3.1 Rosen 5.3: Recursive Definitions and Structural Induction

ReadingL Rosen 5.3, Ducks 10.5, LLM 10.1,

Today, we will define rooted binary trees recursively. We will also define some invariants of binary trees using
this recursive construction.

A rooted tree T is given by a set V (T) of vertices, where every vertex has at most two children, if u is a child
of v, then v is the parent of u, every vertex has at most one parent, and there is exactly one vertex with no
parent; that vertex is called the root.

Define the set T of rooted trees using the following recursive definition:

Basis Step: The tree on one vertex is in T .

Recursive Step: If T1, . . . , Tk are in T , then let V = {r} ∪ {(i, v) : i ∈ {1, . . . , k}, v ∈ V (Ti)} and for
i ∈ {1, . . . , k} let (i, u) be a child of (i, v) exactly when u is a child of v in Ti. Let r be the parent of (i, ri)
for each i ∈ {1, . . . , k} where ri is the root of Ti.

A rooted binary tree is a rooted tree where every vertex has at most two children, and each is labeled as a
left or right child (we can have just one child, but not two of the same type).

The extended binary trees is the set B defined as:

Basis Step: The empty set ∅ is in B.

Recursive Step: If T1, T2 are in B, then let V = {r} ∪ {(i, v) : i ∈ {1, 2}, v ∈ V (Ti)} and for i ∈ {1, 2}
let (i, u) be a child of (i, v) exactly when u is a child of v in Ti. If T1 6= ∅, then the left child of r is (1, r1)
where r1 is the root of T1. If T2 6= ∅, then the right child of r is (2, r2) where r2 is the root of T2.

Recommended Homework: Rosen 5.3: 44.

8

	Monday, February 23
	LLM 5.4: State Machines
	State Machine Definition
	GCD Algorithm
	Suggested Homework

	Wednesday, February 25
	LLM 5.4: State Machines — Rosen 5.3: Recursive Definitions and Structural Induction
	Recursively Defined Functions
	Alphabets and Strings

	Friday, February 25, 2015
	Rosen 5.3: Recursive Definitions and Structural Induction

