COM S 330 — Lecture Notes — Week of Mar 9-11
1 Monday, March 9

1.1 Rosen 6.2: Pigeonhole Principle

Reading: Rosen 6.2, Ducks 1.5, LLM

Pigeonhole Principle.

If k is a positive integer and k£ + 1 or more objects are placed into
k boxes, then there is at least one box containing two or more
objects.

Note: The pigeonhole principle does not say that if we place k + 1 or more objects into k boxes that every
box has at least one object! We could put all objects into one box!

Ex: Let f be a function from a set A to a set B. If |A| > |B|, then f is not injective.

Ex: Among a group of 367 people, there must be two with the same birthday, as there are only 366 possible
birthdays.

Ex: In any group of 27 English words, there are two that start with the same letter and there are two that
end with the same letter.

Ex: In any group of 677 English words, there are two that start with the same letter and end with the same
letter.

Ex: Among any n + 1 positive integers not exceeding 2n there must be an integer that divides one of the
other integers.

Proof. Let {a1,...,an,a,+1} be integers such that 1 < a; < 2n for all i € {1,...,n}. There exist natural
numbers k; and odd integers ¢; such that a; = 2Fi¢; for each i. Note that 1 < ¢; < 2n—1 for each odd integer
qi, so there are only n possible odd integers in that range. Thus there are two numbers a; and a; where ¢; = g¢;.
Then, either k; < k;, or k; > k; (w.lo.g. assume k; < k;). Then a; = 2%iq; = 2ki—ki(2kig;) = 2ki=Fig; and
hence a; divides a;. O

Ex: A sociologist studies random groups of n people on Facebook, and studies how many friends each person
has within the group of n people. She notices a pattern: there is always a pair of people who have the same
number of friends in the group. Why?

Proof. Let p1,...,pn be n people on Facebook. For i € {1,...,n}, let d(p;) be the number of people within
the set {p1,...,pn} that are friends with p;. Note that 0 < d(p;) < n — 1, so there are a total of n options.
However, if d(p;) = n for some ¢, then p; is friends with everyone in the group! If d(p;) = 0 for some ¢, then
p; is not friends with anyone in the group! Thus, we cannot simultaneously have d(p;) = n and d(p;) =0
for some ¢ and j. So there really are n — 1 values that each d(p;) can take, but that means we have n
inputs to the function d and n — 1 outputs, so two of the inputs, say p; and p;, must have the same output

d(pi) = d(p;)- O

Generalized Pigeonhole Principle.
If N objects are placed into k boxes, then there is a box containing
at least [N/k] objects.

Proof. Let N and k be positive integers. Let N = gk —r where 0 < r < k, so [N/k] = ¢ = (N +1)/k.
Suppose that we place objects into k boxes and every box contains at most [N/k] — 1 objects. Then, the
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number of objects we placed was at most
E([N/E]—1)=k[N/k| - k=k(N+7)/k)—k=(N+r)—k<N+k—k=N.

Therefore, we placed fewer than N objects. O

Ex: If there are 80 students in this class, how many are guaranteed to have their birthday in the same
calendar month? (A: [80/12] =T7)

Def: Let n be an integer with n > 2. Let E,, be the set of pairs {i,j} where 1 < i < j <mn. A 2-coloring
is an assignment ¢ : E,, — {red, blue}. For integers a,b Ramsey number r(a,b) is the minimum n such that
for every 2-coloring ¢ : E,, — {red, blue} there either exists a set {z1,...,2,} C {1,...,n} where every pair
{x;,x;} is colored red, or there exists a set {y1,...,yp} C {1,...,n} where every pair {y;,y;} is colored blue.

Thm: r(3,3) = 6.

Proof. To prove r(3,3) > 5, we demonstrate a coloring. (Shown in class, but not in notes.)

To prove 7(3,3) < 6, we will prove that every 2-coloring of Eg contains a red “triangle” or a blue “triangle”.
Fix a 2-coloring ¢ : Eg — {red,blue}. Consider the element 1. Among the five pairs {1,i} for 2 < i < 6,
there are three of the same color, by generalized pigeonhole principle. Let 2 < i < j < k < 6 be the value
such that {1,4}, {1,5}, {1, k} have the same color, (w.l.o.g. the color is red). Among the three pairs {i, j},
{i,k}, and {j, k}, if there is a red pair, then we have a red triangle! Therefore, they must all be blue, but
that forms a blue triangle! O

For more information, see http://en.wikipedia.org/wiki/Ramsey/27s_theorem

Def: Given a list ay,...,a, of n distinct real numbers, an increasing subsequence is a list a;,,...,a;,
where 41 < iy < -+ < i and a5, < a4, < -+ < a;,; a decreasing subsequence is a list a;,,...,a; where
17 <19 < .- <1 and a;;, > a;, > -+ > a;,. In these subsequences, k is the length.

Erdés-Szekeres Theorem: Every sequence of n?4 1 distinct real numbers contains a subsequence of length
n + 1 that is either strictly increasing or strictly decreasing.

Proof. Let ay,...,ay241 be a list of n? + 1 distinct real numbers and suppose for the sake of contradiction
that the list contains no increasing subsequence of length n+ 1 or decreasing subsequence of length n+1. For
each k € {1,...,n?+1}, let (ix, dy) be the pair where i), is the maximum length of an increasing subsequence

ending at aj and dj is the maximum length of a decreasing subsequence ending at ai. Since each number
by itself is an increasing or decreasing subsequence, ¢, > 1 and di, > 1. Since no increasing or decreasing
subsequence of length n + 1 exists, iy < n and dy < n. Thus, each of these pairs (ig,dy) is in the set
{1,...,n} x {1,...,n} of size n?. By the pigeonhole principle, there exist two distinct values k < ¢ where
(ig,dr) = (ig,dg). However, ay # ayg, so either ay < ap or aj > ay.

If ax < ag, then there is an increasing subsequence of length ¢; ending at ay, and that subsequence has all
previous terms smaller than ax. These terms are all smaller than ay, so there is an increasing subsequence
of length i, + 1 ending at ay, contradicting the definition of i, = .

If ax > ay, then there is a decreasing subsequence of length dj ending at aj, and that subsequence has all
previous terms larger than ai. These terms are all larger than ay, so there is a decreasing subsequence of
length di + 1 ending at ay, contradicting the definition of dy = d.

Thus, we have found a contradiction in all cases, so the assumption that ai, ..., a,241 contains no increasing
or decreasing subsequence of length n + 1 is false. O


http://en.wikipedia.org/wiki/Ramsey%27s_theorem
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2 Wednesday, March 11

2.1 Rosen 6.4: Binomial Coefficients and Identities

Reading: Rosen 6.4, Ducks , LLM

Recall our definition of the binomial coefficient (Z), stated as “n choose k,” to be the number of k-
combinations among a set of n distinct objects.

Binomial Theorem: Consider the polynomial p,(z,y) = (x + 3)™. The coefficient of xFy"~*

(7). That is, (z +y)" = Sp_o (1aky "

in p(z,y) is

Proof. When distributing the product (x + y)(z +y) - -+ (x + ), we can produce the z¥y”~* term by multi-

n terms

plying k of the “x side” and n — k of the “y side.” There are (Z) ways to select which terms we will use the

“g side” and each zFy"~* term is added resulting in a coefficient of (Z) O
Don’t like the proof above? Try another one!

Proof. We prove by induction on n > 0 that for all k, the kth term of p,(z,y) = (z +y)™ is (})a*y" .
Case n = 0: po(w,y) = 1, so the coefficient of z%y° is 1.

(Induction Hypothesis) Let n > 0 and suppose that (z +y)" = >, _, (Z) xhynF,
Case n + 1: Consider how the term z*y"*1=* can appear in p,,1(z,y). But first realize that p,,1(z,y) =
(x+y)" = (z+y)pn(2) = 2pn(2,y) + ypu(z,y). Therefore, z¥n"T1=F can appear as a term on the left or

right of the sum. On the right, the coefficient of x*y"~* in p,(z,y) is (Z) by the Induction Hypothesis, and
thus the coefficient of z¥y(" V=% = y.2*y"=F of yp, (z,y) is (}). On the left, the coefficient of z*~ 1y~ (k=1
in p,(z,y) is (kﬁl) by the Induction Hypothesis, and thus the coefficient of zFy"~ (=1 = g . gh—1y(n+1)—k

of zp,(z,y) is (,",). Therefore, the coefficient of z¥y" V=% in p,;(z) is (}) + (,",). By Pascal’s Identity,

() + G2 = (") =
Thm: 37, (}) = 2"
Proof 1. By the Binomial Theorem, 2" = (1+1)" = >"7_ (7)1F1" % =37 (7). O

Proof 2. Let A be a set of size n. There are 2" subsets of A (by product rule, selecting a subset by deciding
containment of each element of A in order). There are (}) k-subsets of A, so there are >_,._ (}) subsets of
A.

Thm: > _(-1)*(}) =0.
Proof 1. By the Binomial Theorem, 0" = ((—1) 4+ 1)" =3} (3)(=1)F1"% =37 (=1 (}). O

Proof 2. (Note: This proof holds only when n is odd, so k and n— k have opposite parities. The last equality
is subtle.)

Since (7) = (). we have () =(,,) = 0. Therefore, 0 = {22 (~1)¥((3) = (")) = Tio(~DH()- O

Thm: Y, _,2%(}) =3
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Proof 1. By the Binomial Theorem, 3" = (2+1)" = Y (7)2~1" % =30 28 (}). O

Proof 2. Let A be a set of size n. We will count the number of sets B, C where C C B C A.

For each element a of A, we can decide three options: a is not in B or C, a is in B, or a is in B and C.
(Note, we cannot have a in C and a not in B, or else C € B.) Thus, there are 3" situations.

For each subset B of size k, there are 2% subsets C' C B. Thus, there are Y_;'_,2"(}) pairs C C B. O

Vandermonde’s Identity: Let m, n, and r be nonnegative integers with r» < min{n, m}.

("7)=% (26

Proof. Let A be a set of n Cyclone fanes and B a set of m Hawkeye fans. Obviously no one is both a
Cyclone fan and a Hawkeye fan.

There are (m:'") ways to invite r people from A U B to a tailgating party.

In designing my tailgating party, I could first specify that I want & Cyclone fans and r — k Hawkeye fans.
There are (Z) (er) ways to invite k£ Cyclone fans and r — k Hawkeye fans to my tailgating party. By the
sum rule, there are Y, _, (,™,)(}) ways to invite people from AU B to my party. O

Cor: (*) =4, (1)

Proof. By Vandermonde’s identity with » = m = n, we have (2:) = (":") => 1o (nfk) (Z) but by Pascal’s
identity ((,,",) = (})) we complete the proof. O
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3 Friday, March 13

EXAM 2.
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