
COM S 330 — Lecture Notes — Week of Mar 9–11

1 Monday, March 9

1.1 Rosen 6.2: Pigeonhole Principle

Reading: Rosen 6.2, Ducks 1.5, LLM

Pigeonhole Principle.
If k is a positive integer and k + 1 or more objects are placed into
k boxes, then there is at least one box containing two or more
objects.

Note: The pigeonhole principle does not say that if we place k + 1 or more objects into k boxes that every
box has at least one object! We could put all objects into one box!

Ex: Let f be a function from a set A to a set B. If |A| > |B|, then f is not injective.

Ex: Among a group of 367 people, there must be two with the same birthday, as there are only 366 possible
birthdays.

Ex: In any group of 27 English words, there are two that start with the same letter and there are two that
end with the same letter.

Ex: In any group of 677 English words, there are two that start with the same letter and end with the same
letter.

Ex: Among any n + 1 positive integers not exceeding 2n there must be an integer that divides one of the
other integers.

Proof. Let {a1, . . . , an, an+1} be integers such that 1 ≤ ai ≤ 2n for all i ∈ {1, . . . , n}. There exist natural
numbers ki and odd integers qi such that ai = 2kiqi for each i. Note that 1 ≤ qi ≤ 2n−1 for each odd integer
qi, so there are only n possible odd integers in that range. Thus there are two numbers ai and aj where qi = qj .
Then, either ki ≤ kj , or ki > kj (w.l.o.g. assume ki ≤ kj). Then aj = 2kjqj = 2kj−ki(2kiqi) = 2kj−kiai and
hence ai divides aj .

Ex: A sociologist studies random groups of n people on Facebook, and studies how many friends each person
has within the group of n people. She notices a pattern: there is always a pair of people who have the same
number of friends in the group. Why?

Proof. Let p1, . . . , pn be n people on Facebook. For i ∈ {1, . . . , n}, let d(pi) be the number of people within
the set {p1, . . . , pn} that are friends with pi. Note that 0 ≤ d(pi) ≤ n− 1, so there are a total of n options.
However, if d(pi) = n for some i, then pi is friends with everyone in the group! If d(pj) = 0 for some i, then
pj is not friends with anyone in the group! Thus, we cannot simultaneously have d(pi) = n and d(pj) = 0
for some i and j. So there really are n − 1 values that each d(pi) can take, but that means we have n
inputs to the function d and n− 1 outputs, so two of the inputs, say pi and pj , must have the same output
d(pi) = d(pj).

Generalized Pigeonhole Principle.
If N objects are placed into k boxes, then there is a box containing
at least dN/ke objects.

Proof. Let N and k be positive integers. Let N = qk − r where 0 ≤ r < k, so dN/ke = q = (N + r)/k.
Suppose that we place objects into k boxes and every box contains at most dN/ke − 1 objects. Then, the
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number of objects we placed was at most

k(dN/ke − 1) = kdN/ke − k = k((N + r)/k)− k = (N + r)− k < N + k − k = N.

Therefore, we placed fewer than N objects.

Ex: If there are 80 students in this class, how many are guaranteed to have their birthday in the same
calendar month? (A: d80/12e = 7)

Def: Let n be an integer with n ≥ 2. Let En be the set of pairs {i, j} where 1 ≤ i < j ≤ n. A 2-coloring
is an assignment c : En → {red,blue}. For integers a, b Ramsey number r(a, b) is the minimum n such that
for every 2-coloring c : En → {red,blue} there either exists a set {x1, . . . , xa} ⊂ {1, . . . , n} where every pair
{xi, xj} is colored red, or there exists a set {y1, . . . , yb} ⊂ {1, . . . , n} where every pair {yi, yj} is colored blue.

Thm: r(3, 3) = 6.

Proof. To prove r(3, 3) > 5, we demonstrate a coloring. (Shown in class, but not in notes.)

To prove r(3, 3) ≤ 6, we will prove that every 2-coloring of E6 contains a red “triangle” or a blue “triangle”.
Fix a 2-coloring c : E6 → {red,blue}. Consider the element 1. Among the five pairs {1, i} for 2 ≤ i ≤ 6,
there are three of the same color, by generalized pigeonhole principle. Let 2 ≤ i < j < k ≤ 6 be the value
such that {1, i}, {1, j}, {1, k} have the same color, (w.l.o.g. the color is red). Among the three pairs {i, j},
{i, k}, and {j, k}, if there is a red pair, then we have a red triangle! Therefore, they must all be blue, but
that forms a blue triangle!

For more information, see http://en.wikipedia.org/wiki/Ramsey%27s_theorem

Def: Given a list a1, . . . , an of n distinct real numbers, an increasing subsequence is a list ai1 , . . . , aik
where i1 < i2 < · · · < ik and ai1 < ai2 < · · · < aik ; a decreasing subsequence is a list ai1 , . . . , aik where
i1 < i2 < · · · < ik and ai1 > ai2 > · · · > aik . In these subsequences, k is the length.

Erdős-Szekeres Theorem: Every sequence of n2+1 distinct real numbers contains a subsequence of length
n + 1 that is either strictly increasing or strictly decreasing.

Proof. Let a1, . . . , an2+1 be a list of n2 + 1 distinct real numbers and suppose for the sake of contradiction
that the list contains no increasing subsequence of length n+1 or decreasing subsequence of length n+1. For
each k ∈ {1, . . . , n2+1}, let (ik, dk) be the pair where ik is the maximum length of an increasing subsequence
ending at ak and dk is the maximum length of a decreasing subsequence ending at ak. Since each number
by itself is an increasing or decreasing subsequence, ik ≥ 1 and dk ≥ 1. Since no increasing or decreasing
subsequence of length n + 1 exists, ik ≤ n and dk ≤ n. Thus, each of these pairs (ik, dk) is in the set
{1, . . . , n} × {1, . . . , n} of size n2. By the pigeonhole principle, there exist two distinct values k < ` where
(ik, dk) = (i`, d`). However, ak 6= a`, so either ak < a` or ak > a`.

If ak < a`, then there is an increasing subsequence of length ik ending at ak, and that subsequence has all
previous terms smaller than ak. These terms are all smaller than a`, so there is an increasing subsequence
of length ik + 1 ending at a`, contradicting the definition of i` = ik.

If ak > a`, then there is a decreasing subsequence of length dk ending at ak, and that subsequence has all
previous terms larger than ak. These terms are all larger than a`, so there is a decreasing subsequence of
length dk + 1 ending at a`, contradicting the definition of d` = dk.

Thus, we have found a contradiction in all cases, so the assumption that a1, . . . , an2+1 contains no increasing
or decreasing subsequence of length n + 1 is false.
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2 Wednesday, March 11

2.1 Rosen 6.4: Binomial Coefficients and Identities

Reading: Rosen 6.4, Ducks , LLM

Recall our definition of the binomial coefficient
(
n
k

)
, stated as “n choose k,” to be the number of k-

combinations among a set of n distinct objects.

Binomial Theorem: Consider the polynomial pn(x, y) = (x + y)n. The coefficient of xkyn−k in p(x, y) is(
n
k

)
. That is, (x + y)n =

∑n
k=0

(
n
k

)
xkyn−k.

Proof. When distributing the product (x + y)(x + y) · · · (x + y)︸ ︷︷ ︸
n terms

, we can produce the xkyn−k term by multi-

plying k of the “x side” and n− k of the “y side.” There are
(
n
k

)
ways to select which terms we will use the

“x side” and each xkyn−k term is added resulting in a coefficient of
(
n
k

)
.

Don’t like the proof above? Try another one!

Proof. We prove by induction on n ≥ 0 that for all k, the kth term of pn(x, y) = (x + y)n is
(
n
k

)
xkyn−k.

Case n = 0: p0(x, y) = 1, so the coefficient of x0y0 is 1.

(Induction Hypothesis) Let n ≥ 0 and suppose that (x + y)n =
∑n

k=0

(
n
k

)
xkyn−k.

Case n + 1: Consider how the term xkyn+1−k can appear in pn+1(x, y). But first realize that pn+1(x, y) =
(x+ y)n+1 = (x+ y)pn(x) = xpn(x, y) + ypn(x, y). Therefore, xknn+1−k can appear as a term on the left or
right of the sum. On the right, the coefficient of xkyn−k in pn(x, y) is

(
n
k

)
by the Induction Hypothesis, and

thus the coefficient of xky(n+1)−k = y ·xkyn−k of ypn(x, y) is
(
n
k

)
. On the left, the coefficient of xk−1yn−(k−1)

in pn(x, y) is
(

n
k−1
)

by the Induction Hypothesis, and thus the coefficient of xkyn−(k−1) = x · xk−1y(n+1)−k

of xpn(x, y) is
(

n
k−1
)
. Therefore, the coefficient of xky(n+1)−k in pn+1(x) is

(
n
k

)
+
(

n
k−1
)
. By Pascal’s Identity,(

n
k

)
+
(

n
k−1
)

=
(
n+1
k

)
.

Thm:
∑n

k=0

(
n
k

)
= 2n.

Proof 1. By the Binomial Theorem, 2n = (1 + 1)n =
∑n

k=0

(
n
k

)
1k1n−k =

∑n
k=0

(
n
k

)
.

Proof 2. Let A be a set of size n. There are 2n subsets of A (by product rule, selecting a subset by deciding
containment of each element of A in order). There are

(
n
k

)
k-subsets of A, so there are

∑n
k=0

(
n
k

)
subsets of

A.

Thm:
∑n

k=0(−1)k
(
n
k

)
= 0.

Proof 1. By the Binomial Theorem, 0n = ((−1) + 1)n =
∑n

k=0

(
n
k

)
(−1)k1n−k =

∑n
k=0(−1)k

(
n
k

)
.

Proof 2. (Note: This proof holds only when n is odd, so k and n−k have opposite parities. The last equality
is subtle.)

Since
(
n
k

)
=
(

n
n−k
)
, we have

(
n
k

)
−
(

n
n−k
)

= 0. Therefore, 0 =
∑bn/2c

k=0 (−1)k(
(
n
k

)
−
(

n
n−k
)
) =

∑n
k=0(−1)k

(
n
k

)
.

Thm:
∑n

k=0 2k
(
n
k

)
= 3n.
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Proof 1. By the Binomial Theorem, 3n = (2 + 1)n =
∑n

k=0

(
n
k

)
2k1n−k =

∑n
k=0 2k

(
n
k

)
.

Proof 2. Let A be a set of size n. We will count the number of sets B,C where C ⊆ B ⊆ A.

For each element a of A, we can decide three options: a is not in B or C, a is in B, or a is in B and C.
(Note, we cannot have a in C and a not in B, or else C 6⊆ B.) Thus, there are 3n situations.

For each subset B of size k, there are 2k subsets C ⊆ B. Thus, there are
∑n

k=0 2k
(
n
k

)
pairs C ⊆ B.

Vandermonde’s Identity: Let m, n, and r be nonnegative integers with r ≤ min{n,m}.(
m + n

r

)
=

n∑
k=0

(
m

r − k

)(
n

k

)
.

Proof. Let A be a set of n Cyclone fanes and B a set of m Hawkeye fans. Obviously no one is both a
Cyclone fan and a Hawkeye fan.

There are
(
m+n

r

)
ways to invite r people from A ∪B to a tailgating party.

In designing my tailgating party, I could first specify that I want k Cyclone fans and r − k Hawkeye fans.
There are

(
n
k

)(
m

r−k
)

ways to invite k Cyclone fans and r − k Hawkeye fans to my tailgating party. By the

sum rule, there are
∑r

k=0

(
m

r−k
)(

n
k

)
ways to invite people from A ∪B to my party.

Cor:
(
2n
n

)
=
∑n

k=0

(
n
k

)2
.

Proof. By Vandermonde’s identity with r = m = n, we have
(
2n
n

)
=
(
n+n
n

)
=
∑n

k=0

(
n

n−k
)(

n
k

)
but by Pascal’s

identity (
(

n
n−k
)

=
(
n
k

)
) we complete the proof.
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3 Friday, March 13

EXAM 2.
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